Optimizing the Access Point (AP) deployment has a great role in wireless applications due to the need for providing an efficient communication with low deployment costs. Quality of Service (QoS), is a major significant parameter and objective to be considered along with AP placement as well the overall deployment cost. This study proposes and investigates a multi-level optimization algorithm called Wireless Optimization Algorithm for Indoor Placement (WOAIP) based on Binary Particle Swarm Optimization (BPSO). WOAIP aims to obtain the optimum AP multi-floor placement with effective coverage that makes it more capable of supporting QoS and cost-effectiveness. Five pairs (coverage, AP deployment) of weights, signal thresholds and received signal strength (RSS) measurements simulated using Wireless InSite (WI) software were considered in the test case study by comparing the results collected from WI with the present wireless simulated physical AP deployment of the targeted building - Computer Science Department at University of Baghdad. The performance evaluation of WOAIP shows an increase in terms of AP placement and optimization distinguished in order to increase the wireless coverage ratio to 92.93% compared to 58.5% of present AP coverage (or 24.5% coverage enhancement on average).
Prochloperazine maleate (PCM) is one of the most prescribed phenothiazine. The purpose of the present research was to develop fast dissolving tablets of PCM with β-cyclodextrin inclusion complex. Tablets prepared by wet granulation with sublimation and by using different superdisintegrants type [ low-hydroxypropylcellulose LH21 (L-HPC LH21), carboxymethylcellulose calcium (ECG505), crospovidone (CP)], and different type of subliming agents (urea and ammonium bicarbonate (AB)). Tablets evaluated for its % friability, disintegration time, wetting time, hardness, content uniformity, weight variation, in vitro dissolution studies. For further enhancement of disintegration and dissolution, PCM orodispersible tablet were formula
... Show MoreNow that most of the conventional reservoirs are being depleted at a rapid pace, the focus is on unconventional reservoirs like tight gas reservoirs. Due to the heterogeneous nature and low permeability of unconventional reservoirs, they require a huge number of wells to hit all the isolated hydrocarbon zones. Infill drilling is one of the most common and effective methods of increasing the recovery, by reducing the well spacing and increasing the sweep efficiency. However, the problem with drilling such a large number of wells is the determination of the optimum location for each well that ensures minimum interference between wells, and accelerates the recovery from the field. Detail
The present work provides to treat real oily saline wastewater released from drilling oil sites by the use of electrocoagulation technique. Aluminum tubes were utilized as electrodes in a concentric manner to minimize the concentrations of 113400 mg TDS/L, 65623 mg TSS/L, and the ions of 477 mg HCO3/L, 102000 mg Cl/L and 5600 mg Ca/L presented in real oily wastewater under the effect of the operational parameters (the applied current and reaction time) by making use of the central composite rotatable design. The final concentrations of TDS, TSS, HCO3, Cl, and Ca that obtained were 93555 ppm (17.50%), 11011 ppm (83.22%), 189ppm (60.38%), 80000ppm (22%), and 4200 ppm (25%), respectively, under the optimum values of the operational parameters
... Show MoreAbstract
Hexapod robot is a flexible mechanical robot with six legs. It has the ability to walk over terrain. The hexapod robot look likes the insect so it has the same gaits. These gaits are tripod, wave and ripple gaits. Hexapod robot needs to stay statically stable at all the times during each gait in order not to fall with three or more legs continuously contacts with the ground. The safety static stability walking is called (the stability margin). In this paper, the forward and inverse kinematics are derived for each hexapod’s leg in order to simulate the hexapod robot model walking using MATLAB R2010a for all gaits and the geometry in order to derive the equations of the sub-constraint workspaces for each
... Show MoreSome maps of the chaotic firefly algorithm were selected to select variables for data on blood diseases and blood vessels obtained from Nasiriyah General Hospital where the data were tested and tracking the distribution of Gamma and it was concluded that a Chebyshevmap method is more efficient than a Sinusoidal map method through mean square error criterion.
Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has
... Show More<span lang="EN-US">Proper employment of Hybrid Wind/ PV system is often implemented near the load, and it is linked with the grid to study dynamic stability analysis. Generally, instability is because of sudden load demand variant and variant in renewable sources generation. As well as, weather variation creates several factors that affect the operation of the integrated hybrid system. So this paper introduces output result of a PV /wind via power electronic technique; DC chopper; that is linked to Iraqi power system to promote the facilitating achievement of Wind/ PV voltage. Moreover, PSS/E is used to study dynamic power stability for hybrid system which is attached to an effective region of Iraqi Network. The hybrid system
... Show MoreThis abstract focuses on the significance of wireless body area networks (WBANs) as a cutting-edge and self-governing technology, which has garnered substantial attention from researchers. The central challenge faced by WBANs revolves around upholding quality of service (QoS) within rapidly evolving sectors like healthcare. The intricate task of managing diverse traffic types with limited resources further compounds this challenge. Particularly in medical WBANs, the prioritization of vital data is crucial to ensure prompt delivery of critical information. Given the stringent requirements of these systems, any data loss or delays are untenable, necessitating the implementation of intelligent algorithms. These algorithms play a pivota
... Show MoreWireless Body Area Sensor Network (WBASN) is gaining significant attention due to its applications in smart health offering cost-effective, efficient, ubiquitous, and unobtrusive telemedicine. WBASNs face challenges including interference, Quality of Service, transmit power, and resource constraints. Recognizing these challenges, this paper presents an energy and Quality of Service-aware routing algorithm. The proposed algorithm is based on each node's Collaboratively Evaluated Value (CEV) to select the most suitable cluster head (CH). The Collaborative Value (CV) is derived from three factors, the node's residual energy, the distance vector between nodes and personal device, and the sensor's density in each CH. The CEV algorithm operates i
... Show More