Preferred Language
Articles
/
bsj-5842
Ammonia Removal in Free-Surface Constructed Wetlands Employing Synthetic Floating Islands: Employing synthetic floating islands
...Show More Authors

Free water surface constructed wetlands (FSCWs) can be used to complement conventional waste water treatment but removal efficiencies are often limited by a high ratio of water volume to biofilm surface area (i.e. high water depth). Floating treatment wetlands (FTWs) consist of floating matrices which can enhance the surface area available for the development of fixed microbial biofilms and provide a platform for plant growth (which can remove pollutants by uptake).  In this study the potential of FTWs for ammoniacal nitrogen (AN) removal was evaluated using experimental mesocosms operated under steady-state flow conditions with ten different treatments (two water depths, two levels of FTW mat coverage, two different plant densities and a control, all replicated three times). A simple model was constructed as a framework for understanding N dynamics in each treatment.  The model was calibrated using data obtained from one treatment and validated independently for the other treatments. Specifically, we hypothesized that the nitrification and volatilization rate constants are inversely proportional to water depth and proportional to mat surface area. This allowed the relative magnitude of different removal mechanisms to be estimated.  The model was able to predict steady-state concentrations of AN and total oxidized nitrogen (TON) across the different treatments well (values for correlation in the regression between measured and predicted steady-state concentrations and RMSE were 0.88 and 0.40 mg N L-1 for AN, and 0.63 and 1.75 mg N L-1 for TON).  The results confirm that nitrification is the principal AN removal process, with maximum removal occurring in shallow systems with high matrix cover (i.e. a high ratio of biofilm surface area to water volume). Plant uptake was a relatively minor loss process compared to nitrification. Integrated experimental and model-based approach was found to be a useful tool to improve mechanistic understanding AN dynamics in FSCWs and system performance.

 

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Desalination And Water Treatment
Removal of nitrates from water by Amberlite IR-400 and economic Duolite A-378 ion exchange resins
...Show More Authors

View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Apr 01 2017
Journal Name
Journal Of Engineering
Comparative Study between Nanofiltration and Reverse Osmosis Membranes for the Removal of Heavy Metals from Electroplating Wastewater
...Show More Authors

The present work aimed to study the efficiency of nanofiltration (NF) and reverse osmosis (RO) process for water recovery from electroplating wastewater and study the factors affecting the performance of two membrane processes. Nanofiltration and reverse osmosis membranes are made from polyamide as spiral wound module. The inorganic materials ZnCl2, CuCl2.2H2O, NiCl2.6H2O and CrCl3.6H2O were used as feed solutions. The operating parameters studied were: operating time, feed concentrations for heavy metal ions, operating pressure, feed flow rate, feed temperature and feed pH. The experimental results showed, the permeate concentration increased and water flux decreased with increase in time from 0 to 70 min. The permeate concentrations incre

... Show More
Preview PDF
Publication Date
Tue Nov 01 2016
Journal Name
Research Journal Of Pharmaceutical, Biological And Chemical Sciences
The use of locally prepared Zeolite (Y) for the removal of hydrogen sulfide from Iraqi natural gas
...Show More Authors

This work was conducted to study the ability of locally prepared Zeolite NaY for the reduction of sulfur compounds from Iraqi natural gas by a continuous mode adsorption unit. Zeolite Y was hydrothermally synthesized using abundant kaolin clay as aluminum precursor. Characterization was made using chemical analysis, XRD and BET surface area. Results of the adsorption experiments showed that zeolite Y is an active adsorbent for removal H2S from natural gas and other gas streams. The effect of temperature was found inversely related to the removal efficiency. Increasing bed height was found to increase the removal efficiency at constant flow rate of natural gas. The adsorption capacity was evaluated and its maximum uptake was 5.345 mg H2S/g z

... Show More
Publication Date
Thu Apr 01 2021
Journal Name
Journal Of Engineering Science And Technology
Applying box-behnken design with statistical optimization for removal vat orange dye from aqueous solution using kaolin
...Show More Authors

Scopus (4)
Scopus
Publication Date
Sat Apr 01 2017
Journal Name
2017 International Conference On Environmental Impacts Of The Oil And Gas Industries: Kurdistan Region Of Iraq As A Case Study (eiogi)
Inverse fluidized bed for chromium ions removal from wastewater and produced water using peanut shells as adsorbent
...Show More Authors

View Publication
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Fri Dec 01 2017
Journal Name
International Journal Of Science And Research
Theoretical and Experimental Study of Nanofiltration and Reverse Osmosis Membranes for Removal of Heavy Metals from Wastewater
...Show More Authors

The present work aimed to study the efficiency of nanofiltration (NF) and reverse osmosis (RO) membrane for heavy metal removal from wastewater and study the factors affecting the performance of these two membranes: feed concentrations for heavy metal ions, pressure, and flow rate. The experimental results showed, heavy metals concentration in permeate increase with raise in feed concentrations, decline with increase in flow rate. The raise of pressure, heavy metals concentration decreases for RO membrane, but for NF membrane the concentration decrease and then at high pressure increase. The rejection percentage for chromium in NF and RO is 99.7% and 99.9%, for copper is 98.4% and 99.3%, for zinc is 97.9% and 99.5%, for nickel is 97.2% and

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Oct 27 2014
Journal Name
Desalination And Water Treatment
Simultaneous adsorption–precipitation characterization as mechanisms for metals removal from aqueous solutions by cement kiln dust (CKD)
...Show More Authors

Scopus (11)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Chemical Data Collections
Removal of diclofenac from aqueous solution on apricot seeds activated carbon synthesized by pyro carbonic acid microwave
...Show More Authors

Pharmaceuticals have been widely remaining contaminants in wastewater, and diclofenac is the most common pharmaceutical pollutant. Therefore, the removal of diclofenac from aqueous solutions using activated carbon produced by pyrocarbonic acid and microwaves was investigated in this research. Apricot seed powder and pyrophosphoric acid (45 wt%) were selected as raw material and activator respectively, and microwave irradiation technique was used to prepare the activated carbon. The raw material was impregnated in pyrophosphoric acid at 80◦C with an impregnation ratio of 1: 3 (apricot seeds to phosphoric acid), the impregnation time was 4 h, whereas the power of the microwave was 700 watts with a radiation time of 20 min. A series o

... Show More
Crossref (16)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Desalination And Water Treatment
Preparation and application of polyethersulfone ultrafiltration membrane incorporating NaX zeolite for lead ions removal from aqueous solutions
...Show More Authors

View Publication
Scopus (35)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Mon May 01 2017
Journal Name
Desalination And Water Treatment
Cadmium removal from simulated chloride wastewater using a novel flow-by fixed bed electrochemical reactor: Taguchi approach
...Show More Authors

View Publication
Scopus (10)
Crossref (7)
Scopus Clarivate Crossref