Regression testing being expensive, requires optimization notion. Typically, the optimization of test cases results in selecting a reduced set or subset of test cases or prioritizing the test cases to detect potential faults at an earlier phase. Many former studies revealed the heuristic-dependent mechanism to attain optimality while reducing or prioritizing test cases. Nevertheless, those studies were deprived of systematic procedures to manage tied test cases issue. Moreover, evolutionary algorithms such as the genetic process often help in depleting test cases, together with a concurrent decrease in computational runtime. However, when examining the fault detection capacity along with other parameters, is required, the method falls short. The current research is motivated by this concept and proposes a multifactor algorithm incorporated with genetic operators and powerful features. A factor-based prioritizer is introduced for proper handling of tied test cases that emerged while implementing re-ordering. Besides this, a Cost-based Fine Tuner (CFT) is embedded in the study to reveal the stable test cases for processing. The effectiveness of the outcome procured through the proposed minimization approach is anatomized and compared with a specific heuristic method (rule-based) and standard genetic methodology. Intra-validation for the result achieved from the reduction procedure is performed graphically. This study contrasts randomly generated sequences with procured re-ordered test sequence for over '10' benchmark codes for the proposed prioritization scheme. Experimental analysis divulged that the proposed system significantly managed to achieve a reduction of 35-40% in testing effort by identifying and executing stable and coverage efficacious test cases at an earlier phase.
Optimizing the Access Point (AP) deployment is of great importance in wireless applications owing the requirement to provide efficient and cost-effective communication. Highly targeted by many researchers and academic industries, Quality of Service (QOS) is an important primary parameter and objective in mind along with AP placement and overall publishing cost. This study proposes and investigates a multi-level optimization algorithm based on Binary Particle Swarm Optimization (BPSO). It aims to an optimal multi-floor AP placement with effective coverage that makes it more capable of supporting QOS and cost effectiveness. Five pairs (coverage, AP placement) of weights, signal threshol
Wireless Body Area Network (WBAN) is a tool that improves real-time patient health observation in hospitals, asylums, especially at home. WBAN has grown popularity in recent years due to its critical role and vast range of medical applications. Due to the sensitive nature of the patient information being transmitted through the WBAN network, security is of paramount importance. To guarantee the safe movement of data between sensor nodes and various WBAN networks, a high level of security is required in a WBAN network. This research introduces a novel technique named Integrated Grasshopper Optimization Algorithm with Artificial Neural Network (IGO-ANN) for distinguishing between trusted nodes in WBAN networks by means of a classifica
... Show MoreBackground and Aim: due to the rapid growth of data communication and multimedia system applications, security becomes a critical issue in the communication and storage of images. This study aims to improve encryption and decryption for various types of images by decreasing time consumption and strengthening security. Methodology: An algorithm is proposed for encrypting images based on the Carlisle Adams and Stafford Tavares CAST block cipher algorithm with 3D and 2D logistic maps. A chaotic function that increases the randomness in the encrypted data and images, thereby breaking the relation sequence through the encryption procedure, is introduced. The time is decreased by using three secure and private S-Boxes rather than using si
... Show MoreIn this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
A Genetic Algorithm optimization model is used in this study to find the optimum flow values of the Tigris river branches near Ammara city, which their water is to be used for central marshes restoration after mixing in Maissan River. These tributaries are Al-Areed, AlBittera and Al-Majar Al-Kabeer Rivers. The aim of this model is to enhance the water quality in Maissan River, hence provide acceptable water quality for marsh restoration. The model is applied for different water quality change scenarios ,i.e. , 10%,20% increase in EC,TDS and BOD. The model output are the optimum flow values for the three rivers while, the input data are monthly flows(1994-2011),monthly water requirements and water quality parameters (EC, TDS, BOD, DO and
... Show MoreThe drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the
Government spending is the tool that the state uses to achieve its various goals. The research aims to identify the most important determinants of government spending in Iraq and to indicate the type and nature of the relationship between government spending and its determinants, which will contribute to understanding the movement of government spending. The results of the co-integration test using the border test methodology showed that the variables of population growth and oil prices have a long-term effect on government spending while inflation is not significant in the long run, and that 47% of the equilibrium imbalance (short-term imbalance) in government spending in the previous period (t-) can be corrected in the current period (t)
... Show MoreAim: The study aimed to investigate the presence of the specific B1 gene T gondii in blood and milk samples from natural infected cattle and pregnant women (16-30 weeks) whose examination performed by the officers at the women's and children's Educational hospital in Al-Diwaniyah, Iraq. Materials and methods: A total of 150 serum samplings were collected analysed and scanned for Anti-T gondi antibodies (75 naturally-infected goats and 75 pregnant women with Toxoplasma). Polymerase chain reaction (PCR) was used to detect of B1(399pb) gene in 26 goat's blood samples and 7 samples from pregnant women. Results: A quick-test anti-cassette gondii results showed 26 positive samples of goats in a percentage of 34,666 percent, while a higher percent
... Show More