The increase in population resulted in an increase in the consumption of water. The present work investigates the performance of a recycling solar- powered greywater treatment system for the purposes of irrigation, used to reduce the amount of waste grey water and reduce electricity consumption and reduce the costs of constructing large scale water treatment plants. The system consumes about 3814W per hour and provides water treatment about 1.4 m3 per day. The proposed system is designed to residential, office and governmental buildings application. Tests are conducted in an office building at the Ministry of Science and Technology site in Baghdad. Laboratorial water samples testing analyses are conducted for measuring the COD, BOD5, TDS, NH4, NO3-TN, TOC, TSS, pH and oil and grease content according to the Iraqi standards. Test results revealed a huge decrease in the values of BOD5 and COD for readings for every15 days and for a period of 5 months by removing rate more than 90% and also noting the values of TOC by removing about 80%, this indicates that the results of Laboratory testing have proved the success of the treatment process. The research is divided into two parts, theoretical and practical. The theoretical one includes choosing the type and size of the equipment and the required tools for the treatment system. While the practical one covers implementing a laboratory-scale system for the proposed treatment system and conducting experiments and laboratory analyses of greywater samples. Top of Form
The major goal of this research was to use the Euler method to determine the best starting value for eccentricity. Various heights were chosen for satellites that were affected by atmospheric drag. It was explained how to turn the position and velocity components into orbital elements. Also, Euler integration method was explained. The results indicated that the drag is deviated the satellite trajectory from a keplerian orbit. As a result, the Keplerian orbital elements alter throughout time. Additionally, the current analysis showed that Euler method could only be used for low Earth orbits between (100 and 500) km and very small eccentricity (e = 0.001).
This paper describes the digital chaotic signal with ship map design. The robust digital implementation eliminates the variation tolerance and electronics noise problems common in analog chaotic circuits. Generation of good non-repeatable and nonpredictable random sequences is of increasing importance in security applications. The use of 1-D chaotic signal to mask useful information and to mask it unrecognizable by the receiver is a field of research in full expansion. The piece-wise 1-D map such as ship map is used for this paper. The main advantages of chaos are the increased security of the transmission and ease of generation of a great number of distinct sequences. As consequence, the number of users in the systems can be increased. Rec
... Show MoreThe work includes synthesis and characterization of some new heterocyclic compounds, as flow: The compound (3) (5-(4-chlorophenyl) -2-hydrazinyl-1,3,4-oxadiazole was synthesized by using two methods; the first method includes the direct reaction between hydrazine hydrate 80% and 5-(4-chlorophenyl)-2- (ethylthio) 1,3,4-oxadiazole (1), the second method involves converting 5-(4-chlorophenyl)-1,3,4-oxadiazol-2-amine (2) to diazonium salt then reducing this salt to compound (3) by stannous chloride. Compound (3) was used as starting material for synthesizing several fused heterocyclic compounds. The compound 6-(4-chlorophenyl)[1,2.4] triazolo [3,4,b][1,3,4] oxadiazole-3-(2H) thione (compound 4) was synthesized from the reaction of compound (3)
... Show MoreNanofluids are proven to be efficient agents for wettability alteration in subsurface applications including enhanced oil recovery (EOR). Nanofluids can also be used for CO2-storage applications where the CO2-wet rocks can be rendered strongly water-wet, however no attention has been given to this aspect in the past. Thus in this work we presents contact angle (θ) measurements for CO2/brine/calcite system as function of pressure (0.1 MPa, 5 MPa, 10 MPa, 15 MPa, and 20 MPa), temperature (23 °C, 50 °C and 70 °C), and salinity (0, 5, 10, 15, and 20% NaCl) before and after nano-treatment to address the wettability alteration efficiency. Moreover, the effect of treatment pressure and temperature, treatment fluid concentration (SiO2 wt%) and
... Show MoreThe cytotoxicity of different concentrations of purified methionine γ- lyase from Pseudomonas putida on cancer cell lines (RD, AMN3 and AMGM) at 96 hr was studied. The bacterial enzyme with concentration 1000µg/ml was revealed highly cytotoxicity against cancer cell lines in comparison with other concentrations whereas slight cytotoxicity was observed on normal cell (REF).
In this paper, the memorization capability of a multilayer interpolative neural network is exploited to estimate a mobile position based on three angles of arrival. The neural network is trained with ideal angles-position patterns distributed uniformly throughout the region. This approach is compared with two other analytical methods, the average-position method which relies on finding the average position of the vertices of the uncertainty triangular region and the optimal position method which relies on finding the nearest ideal angles-position pattern to the measured angles. Simulation results based on estimations of the mobile position of particles moving along a nonlinear path show that the interpolative neural network approach outperf
... Show MoreThis study relates to synthesis of bentonite-supported iron/copper nanoparticles through the biosynthesis method using eucalyptus plant leaf extract, which were then named E-Fe/Cu@B-NPs. The synthesised E-Fe/Cu@B-NPs were examined by a set of experiments involving a heterogeneous Fenton-like process that removed direct blue 15 (DB15) dye from wastewater. The resultant E-Fe/Cu@B-NPs were characterised by scanning electron microscopy, Brunauer–Emmet–Teller analysis, zeta potential analysis, Fourier transform infrared spectroscopy and atomic force microscopy. The operating parameters in batch experiments were optimised using Box–Behnken design. These parameters were pH, hydrogen peroxide (H2O2
... Show MoreIn this work, porous silicon gas sensor hs been fabricated on n-type crystalline silicon (c-Si) wafers of (100) orientation denoted by n-PS using electrochemical etching (ECE) process at etching time 10 min and etching current density 40 mA/cm2. Deposition of the catalyst (Cu) is done by immersing porous silicon (PS) layer in solution consists of 3ml from (Cu) chloride with 4ml (HF) and 12ml (ethanol) and 1 ml (H2O2). The structural, morphological and gas sensing behavior of porous silicon has been studied. The formation of nanostructured silicon is confirmed by using X-ray diffraction (XRD) measurement as well as it shows the formation of an oxide silicon layer due to chemical reaction. Atomic force microscope for PS illustrates that the p
... Show More