Social Networking has dominated the whole world by providing a platform of information dissemination. Usually people share information without knowing its truthfulness. Nowadays Social Networks are used for gaining influence in many fields like in elections, advertisements etc. It is not surprising that social media has become a weapon for manipulating sentiments by spreading disinformation. Propaganda is one of the systematic and deliberate attempts used for influencing people for the political, religious gains. In this research paper, efforts were made to classify Propagandist text from Non-Propagandist text using supervised machine learning algorithms. Data was collected from the news sources from July 2018-August 2018. After annotating the text, feature engineering is performed using techniques like term frequency/inverse document frequency (TF/IDF) and Bag of words (BOW). The relevant features are supplied to support vector machine (SVM) and Multinomial Naïve Bayesian (MNB) classifiers. The fine tuning of SVM is being done by taking kernel Linear, Poly and RBF. SVM showed better results than MNB by having precision of 70%, recall of 76.5%, F1 Score of 69.5% and overall Accuracy of 69.2%.
This paper aims to study the rate of star formation (SFR) in luminous infrared galaxies at different wavelengths using distance measurement techniques (dl, dm) and to know which methods are the most accurate to determine the rate of star formation as we present through this research the results of the statistical analysis (descriptive statistics) for a sample of luminous infrared galaxies. The data used in this research were collected from the NASA Extragalactic Database (NED) and HYPERLEDA, then used to calculate the star formation rate and indicate the accuracy of the distance methods used (dl, dm). Two methods were tested on Hα, OII, FIR, radio continuum at 1.4 GHz, FUV, NUV, and total (FUV + FIR). The results showed that the dl
... Show MoreIs in this research review of the way minimum absolute deviations values based on linear programming method to estimate the parameters of simple linear regression model and give an overview of this model. We were modeling method deviations of the absolute values proposed using a scale of dispersion and composition of a simple linear regression model based on the proposed measure. Object of the work is to find the capabilities of not affected by abnormal values by using numerical method and at the lowest possible recurrence.
this research aims at a number of objectives including Developing the tax examination process and raise its efficiency without relying on comprehensive examination method using some statistical methods in the tax examination and Discussing the most important concepts related to the statistical methods used in the tax examination and showing its importance and how they are applied. the research represents an applied study in the General Commission of taxes. In order to achieve its objectives the research has used in the theoretical side the descriptive approach (analytical), and in the practical side Some statistical methods applied to the sample of the final accounts for the contracting company (limited) and the pharmaceutical industry (
... Show MoreThe field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet
... Show MorePreparing teacher occupies the attention of many thinkers and philosophers since the age of
kaldinics ( people of mesoptam / 2342 pH ) to the Islamic age where moslems philosophers
focus their attention on thought and philosophy where the philosophy of that teaching
depends on : teacher , student and family begin .
So , the issue of preparing and training teacher occupies the attention of education scientists
depending on his vital and important role in implementing of teaching policies in philosophies
and Islamic educational thought , therefore , the preparing and development of the teacher
regards as one of the basics of teaching development because of its importance in
development of teaching performance and th
Although the Wiener filtering is the optimal tradeoff of inverse filtering and noise smoothing, in the case when the blurring filter is singular, the Wiener filtering actually amplify the noise. This suggests that a denoising step is needed to remove the amplified noise .Wavelet-based denoising scheme provides a natural technique for this purpose .
In this paper a new image restoration scheme is proposed, the scheme contains two separate steps : Fourier-domain inverse filtering and wavelet-domain image denoising. The first stage is Wiener filtering of the input image , the filtered image is inputted to adaptive threshold wavelet
... Show MoreThe majority of Arab EFL (English as a Foreign Language) learners struggle with speaking English fluency. Iraqi students struggle to speak English confidently due to mispronunciation, grammatical errors, short and long pauses while speaking or feeling confused in normal conversations. Collaborative learning is crucial to enhance student’s speaking skills in the long run. This study aims to state the importance of collaborative learning as a teaching method to EFL learners in the meantime. In this quantitative and qualitative study, specific focus is taken on some of Barros’s views of collaborative learning as a teamwork and some of Pattanpichet’s speaking achievements under four categories: academic benefits, social benefits,
... Show More
The objective of this study was to develop neural network algorithm, (Multilayer Perceptron), based correlations for the prediction overall volumetric mass-transfer coefficient (kLa), in slurry bubble column for gas-liquid-solid systems. The Multilayer Perceptron is a novel technique based on the feature generation approach using back propagation neural network. Measurements of overall volumetric mass transfer coefficient were made with the air - Water, air - Glycerin and air - Alcohol systems as the liquid phase in bubble column of 0.15 m diameter. For operation with gas velocity in the range 0-20 cm/sec, the overall volumetric mass transfer coefficient was found to decrease w
... Show MoreThe current study presents the simulative study and evaluation of MANET mobility models over UDP traffic pattern to determine the effects of this traffic pattern on mobility models in MANET which is implemented in NS-2.35 according to various performance metri (Throughput, AED (Average End-2-end Delay), drop packets, NRL (Normalize Routing Load) and PDF (Packet Delivery Fraction)) with various parameters such as different velocities, different environment areas, different number of nodes, different traffic rates, different traffic sources, different pause times and different simulation times . A routing protocol.…was exploited AODV(Adhoc On demand Distance Vector) and RWP (Random Waypoint), GMM (Gauss Markov Model), RPGM (Refere
... Show MoreThis study was conducted to assess the hydrocarbon degradation abilities of Sphingomonas paucimobilis, Pentoae species, Staphylococcus aureus, and Enterobacter cloacae, which isolated from diesel contaminated soil samples. Single strains and mixed bacterial consortia have been investigated their ability to degrade 1.0 % (v/v) of diesel oil in Bushnell- Haas medium as sole.carbon.and.energy.source. At temperature 30∘C, the individual.bacterial.isolates exhibited low growth and low degradation.than did the.mixed. bacterial.culture. After 28 days.of incubation the.combination.of four isolates degraded.an upper limit.of diesel 88.4%. This was. continued.by 85.1% by S. paucimobilis, 84 % by Pentoae sp., 79% by S.aureus, and
... Show More