Social Networking has dominated the whole world by providing a platform of information dissemination. Usually people share information without knowing its truthfulness. Nowadays Social Networks are used for gaining influence in many fields like in elections, advertisements etc. It is not surprising that social media has become a weapon for manipulating sentiments by spreading disinformation. Propaganda is one of the systematic and deliberate attempts used for influencing people for the political, religious gains. In this research paper, efforts were made to classify Propagandist text from Non-Propagandist text using supervised machine learning algorithms. Data was collected from the news sources from July 2018-August 2018. After annotating the text, feature engineering is performed using techniques like term frequency/inverse document frequency (TF/IDF) and Bag of words (BOW). The relevant features are supplied to support vector machine (SVM) and Multinomial Naïve Bayesian (MNB) classifiers. The fine tuning of SVM is being done by taking kernel Linear, Poly and RBF. SVM showed better results than MNB by having precision of 70%, recall of 76.5%, F1 Score of 69.5% and overall Accuracy of 69.2%.
We propose a new object tracking model for two degrees of freedom mechanism. Our model uses a reverse projection from a camera plane to a world plane. Here, the model takes advantage of optic flow technique by re-projecting the flow vectors from the image space into world space. A pan-tilt (PT) mounting system is used to verify the performance of our model and maintain the tracked object within a region of interest (ROI). This system contains two servo motors to enable a webcam rotating along PT axes. The PT rotation angles are estimated based on a rigid transformation of the the optic flow vectors in which an idealized translation matrix followed by two rotational matrices around PT axes are used. Our model was tested and evaluated
... Show MoreThe microbend sensor is designed to experience a light loss when force is applied to the sensor. The periodic microbends cause propagating light to couple into higher order modes, the existing higher order modes become unguided modes. Three models of deform cells are fabricated at (3, 5, 8) mm pitchand tested by using MMF and laser source at 850 nm. The maximum output power of (8, 5, 3)mm model is (3, 2.7, 2.55)nW respectively at applied force 5N and the minimum value is (1.9, 1.65, 1.5)nW respectively at 60N.The strain is calculated at different microbend cells ,and the best sensitivity of this sensor for cell 8mm is equal to 0.6nW/N.
In the present research, a crane frame has been investigated by using finite element method. The damage is simulated by reducing the stiffness of assumed elements with ratios (10% and 20 %) in mid- span of the vertical column in crane frame. The cracked beam with a one-edge and non-propagating crack has been used. Six cases of damage are modeled for crane frame and by introducing cracked elements at different locations with ratio of depth of crack to the height of the beam (a/h) 0.1, 0.20. A FEM program coded in Matlab 6.5 was used to model the numerical simulation of the damage scenarios. The results showed a decreasing in the five natural frequencies from undamaged beam which means
... Show MoreSelective recovery of atropine from Datura innoxia seeds was studied. Applying pertraction in a rotating film contactor (RFC) the alkaloid was successfully recovered from native aqueous extracts obtained from the plant seeds. Decane as a liquid membrane and sulfuric acid as a stripping agent were used. Pertraction from native liquid extracts provided also a good atropine refinement, since the most of co-extracted from the plant species remained in the feed or membrane solution. Solid–liquid extraction of atropine from Datura innoxia seeds was coupled with RF-pertraction in order to purify simultaneously the extract obtained from the plant. Applying the integrated process, proposed in this study, a product containing 92.6% atropine was
... Show MoreIn this study, some attenuation parameters of gamma shields were studied. This shields consisting of composite materials of Unsaturated polyester as a base material and Nano iron oxide (Fe2O3) and, micro iron (Fe) as reinforcement materials at different percentages (1, 3,5,7and 9)wt%, and with different thickness (1, 1.5, 2, 2.5, 3, 3.5and 4) cm. The results showed that the use of nanoparticles is better than the microparticales in the field of radiation shielding. It has been shown that the values of attenuation parameters of gamma it bitter in the case of nanoparticles than case of the use of micro material.
In this work, satellite images classification for Al Chabaish marshes and the area surrounding district in (Dhi Qar) province for years 1990,2000 and 2015 using two software programming (MATLAB 7.11 and ERDAS imagine 2014) is presented. Proposed supervised classification method (Modified Vector Quantization) using MATLAB software and supervised classification method (Maximum likelihood Classifier) using ERDAS imagine have been used, in order to get most accurate results and compare these methods. The changes that taken place in year 2000 comparing with 1990 and in year 2015 comparing with 2000 are calculated. The results from classification indicated that water and vegetation are decreased, while barren land, alluvial soil and shallow water
... Show MoreThis search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as com
... Show More