The applications of hot plasma are many and numerous applications require high values of the temperature of the electrons within the plasma region. Improving electron temperature values is one of the important processes for using this specification in plasma for being adopted in several modern applications such as nuclear fusion, plating operations and in industrial applications. In this work, theoretical computations were performed to enhance electron temperature under dense homogeneous plasma. The effect of power and duration time of pulsed Nd:YAG laser was studied on the heating of plasmas by inverse bremsstrahlung for several values for the electron density ratio. There results for these calculations showed that the effect of increasing the values of the laser pulse power (25-250kW) led to decrease the absorption coefficient values by 58.3% and increase the electron temperature by 50.0% at duration pulse time 0.5ns and electron density ratio 0.1. Furthermore, the ratio of electron density increasing and pulse duration time led to increase the higher values of the electron temperature. The results of the calculations showed the effect of the laser power, the percentage of electron density, and the pulse duration for improving the electron temperature. It is possible to control the temperature of the electrons with one of the plasma parameters or the laser beam used, and that it gives a clear indication of researchers in this field to choose the optimal wavelength of the laser beam and electron density ratios for the plasma.
Erbium, as optical probe, doped silicate sol-gel glass with
different Er concentrations was formed by wet chemical synthesis
method using ethanol, water and tetraethaylorthosilicate
[Si(OC2H5)4] precursor. Erbium ions were incorporated into silica
sol-gel matrix via dissolution of Erbium chloride solution into the
initial Si(OC2H5)4 precursor sol. Aluminum (Al) as a co-dopant was
added to the final precursor in the form of Aluminum chloride
(AlCl3) solution. The prepared samples were analyzed using atomic
absorption analysis, X-ray diffraction and spectroscopic tests. The
experimental results concerned with the transmission spectra suggest
that the final samples have a good transparency and homogeneity.
A
A progression of Polyaniline (PANI) and Titanium dioxide (TiO2) nanoparticles (NPs) were prepared by an in-situ polymerization strategy within the sight of TiO2 NPs. The subsequent nanocomposites were analyzed using Fourier-transform infrared spectra (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-Ray Analysis (EDX) taken for the prepared samples. PANI/TiO2 nanocomposites were prepared by various compound materials (with H2SO4 0.3 M and without it, to compare the outcome of it) by the compound oxidation technique using ammonium persulfate (APS) as oxidant within the sight of ultrafine grade powder of TiO2 cooled in an ice bath.
... Show MoreThis study was aimed to find and test biological methods for reducing the aggregation of plastics such as PS in the environment and study the ability of Greater Wax worms larvae (Galleria mellonella) to eat PS that similar in the its structure to beeswax .Weight loss, morphology changes ,FTIR spectroscopy and GC-mass analysis were performed which showed changes in chemical properties of the PS due to degradation. In this study the percentage of weight loss was 33% in the PS treated with G. mellonella. FTIR of PS frass showed the disappearance of aromatic cycle band that was found in the origin PS at region more than 3000 cm-1. Also The PS frass samples from wax worms larvae revealed the creation of a new O-H stretching alcohol
... Show MoreThis research studies the effect of adding five different percentages of polymer (2, 4, 6, 8, and 10% of cement weight) on cement mortar's fresh and hardened properties, which was cured at laboratory temperature for 7, 14, and 28 days. Workability increases with increasing polymer. The workability value was lowest (25.6 and 29.4) % in mixtures containing 2% and 4% of (SBR). Increasing polymer ratios significantly decreased mechanical properties (compressive and flexural strength). Therefore, the best results were at 2% SBR and 4% SBR at 28 days of age. An inverse relationship was recorded between the increase in SBR ratios and polymer-modified cement mortar's compressive and flexural strength values. In general, the high
... Show MoreCarbon nanospheres (CNSs) were successfully prepared and synthesized by Catalytic Chemical Vapor Deposition (CCVD) by using camphor as carbon source only, over iron Cobalt (Fe-Co) saturated zeolite at temperature between (700 oC and 900 °C), with different concentrations of camphor, and reaction time. The synthesized CNSs were characterized using Scanning Electron Microscopy (SEM), X-ray diffraction spectroscopy (XRD), and Fourier Transform Infrared (FTIR). The carbon spheres in different sizes between 100 nm and 1000 nm were investigated. This work has done by two parts, first preparation of the metallic catalyst and second part formation CNSs by heat treatment.
A total of 37 Staphylococcus epidermidis isolates, isolated from corneal scraping of patients with bacterial keratitis and 20 isolates from healthy eyes (as control) (all isolates, isolated from, Ibn Al- Haietham eye hospital / Baghdad), were tested for slime production, 52.63% of all isolates were positive-slime production (23 isolates from patients and 7 isolates from controls). It was found that positive-slime producing S. epidermidis were exhibited a high resistance to antibiotics as compared to negative-slime producing isolates.
This study was aimed to assess the efficiency of N.oleander to remove heavy metals such as Copper (Cu) from wastewater. A toxicity test was conducted outdoor for 65-day to estimate the ability of N.oleander to tolerate Cu in synthetic wastewater. Based on a previous range-finding test, five concentrations were used in this test (0, 50, 100, 300, 510 mg/l). The results showed that maximum values of removal efficiency was found 99.9% on day-49 for the treatment 50 mg/l. Minimum removal efficiency was 94% day-65 for the treatment of 510 mg/l. Water concentration was within the permissible limits of river conservation and were 0.164 at day-35 for the 50 mg/l treatment, decreased thereafter until the end of the observation, and 0.12 at d
... Show MoreKE Sharquie, AA Noaimi, MS Al-Zoubaidi, Journal of Cosmetics, Dermatological Sciences and Applications, 2015 - Cited by 8
In this study the design and installation of evaporative air cooler was carried out using completely outdoor air (fresh air) according to two stage evaporative cooling principle. The laboratory equipment was installed by designing and manufacturing a cross flow plate heat exchanger, where aluminum plates used for this purpose with dimensions (50 × 30 × 40 cm). The surfaces of heat exchanger were covered by sawdust from wetted channels side, to increase the percentage of wetting these surfaces and hence improve the performance and efficiency of air cooler.
An experimental study was carried out to estimate the performance of cooling system, where som
... Show More