A number of ehemical ion materials were used as an absorber against solar energy. These materials were selected according to their absorption spectra in the wavelength range 300-800nm where the solar spectrum is coventrated. A solar olleetorw^esigd and The ability of each material inside the collector for absorbing the solar radiation was examined by a converter parameter “R”.According to the “R” parameter, the cohaltous and copperic ions material seems to be of higher capability for absorbing solar energy than the other materials.All the results were analyzed by means of a least-squared fitting program.
In this research, main types of optical coatings are presented which are used as covers for solar cells, these coatings are reflect the infrared (heat) from the solar cell to increase the efficiency of the cell (because the cell’s efficiency is inversely proportional to the heat), then the theoretical and mathematical description of these optical coatings are presented, and an optical design is designed to meet this objective, its optical transmittance was calculated using (MATLAB R2008a) and (Open Filters 1.0.2) programs
The fall angle of sun rays on the surface of a photovoltaic PV panel and its temperature is negatively affecting the panel electrical energy produced and efficiency. The fall angle problem was commonly solved by using a dual-axis solar tracker that continually maintains the panel orthogonally positioning to the sun rays all day long. This leads to maximum absorption for solar radiation necessary to produce maximum amount of energy and maintain high level of electrical efficiency. To solve the PV panel temperature problem, a Water-Flow Double Glazing WFDG technique has been introduced as a new cooling tool to reduce the panel temperature. In this paper, an integration design of the water glazing system with a dual-axis tracker has been ac
... Show MoreAn improved Metal Solar Wall (MSW) with integrated thermal energy storage is presented in this research. The proposed MSW makes use of two, combined, enhanced heat transfer methods. One of the methods is characterized by filling the tested ducts with a commercially available copper Wired Inserts (WI), while the other one uses dimpled or sinusoidal shaped duct walls instead of plane walls. Ducts having square or semi-circular cross sectional areas are tested in this work.
A developed numerical model for simulating the transported thermal energy in MSW is solved by finite difference method. The model is described by system of three governing energy equations. An experimental test rig has been built and six new duct configurations have b
The increase in population resulted in an increase in the consumption of water. The present work investigates the performance of a recycling solar- powered greywater treatment system for the purposes of irrigation, used to reduce the amount of waste grey water and reduce electricity consumption and reduce the costs of constructing large scale water treatment plants. The system consumes about 3814W per hour and provides water treatment about 1.4 m3 per day. The proposed system is designed to residential, office and governmental buildings application. Tests are conducted in an office building at the Ministry of Science and Technology site in Baghdad. Laboratorial water samples testing analyses are co
... Show MoreMeta stable phase of SnO as stoichiometric compound is deposited utilizing thermal evaporation technique under high vacuum onto glass and p-type silicon. These films are subjected to thermal treatment under oxygen for different temperatures (150,350 and 550 °C ). The Sn metal transformed to SnO at 350 oC, which was clearly seen via XRD measurements, SnO was transformed to a nonstoichiometric phase at 550 oC. AFM was used to obtain topography of the deposited films. The grains are combined compactly to form ridges and clusters along the surface of the SnO and Sn3O3 films. Films were transparent in the visible area and the values of the optical band gap for (150,350 and 550 °C ) 3.1,
Three complexes of copper(II) and iron(II) with mixed ligands acetylacetonebis(thio-semicarbazone)- ABTSH2 and benzaldazine- BA have been prepared and characterized using different physico-chemical techniques including the determination of metal contents, mole-cular weight, measurement of molar conductivity, magnetic moment, molar refraction, infrared and electronic spectra. Accordingly, octahedral complexes having general formulaes [Cu2(ABTSH2)2(BA)2Cl2]Cl2 and [M2(ABTSH2)2(BA)2(SO4)2] {M= Cu(II) or (Fe(II)} have been proposed. The resulted complexes screened for antifungal activity in vitro against the citrus pathogen Aspergillus niger and Fusarium sp. which caused root rot of sugar and the beans pathogen Alternaria sp. All the complex
... Show MoreThere is a variety of artificial foot designs variable for use with prosthetic legs . Most of the design can be divided into two classes, articulated and non-articulated feet. one common non-articulated foot is the SACH . The solid ankle cushion heel foot referred to as the SACH foot has a rigid keel .
One key or the key factor in designing a new prosthesis is in the analysis of a patients response .
This view is the most important because if the foot does not provide functional , practical or cosmetically acceptable characteristics the patient will not feel comfortable with the prosthesis , therefore design and manufacturing a new foot is essential, this foot made from polyethylene, its different shape and characte
... Show More