Several attempts have been made to modify the quasi-Newton condition in order to obtain rapid convergence with complete properties (symmetric and positive definite) of the inverse of Hessian matrix (second derivative of the objective function). There are many unconstrained optimization methods that do not generate positive definiteness of the inverse of Hessian matrix. One of those methods is the symmetric rank 1( H-version) update (SR1 update), where this update satisfies the quasi-Newton condition and the symmetric property of inverse of Hessian matrix, but does not preserve the positive definite property of the inverse of Hessian matrix where the initial inverse of Hessian matrix is positive definiteness. The positive definite property for the inverse of Hessian matrix is very important to guarantee the existence of the minimum point of the objective function and determine the minimum value of the objective function.
Construction of artificial higher order protein complexes allows sampling of structural architectures and functional features not accessible by classical monomeric proteins. Here, we combine in silico modelling with expanded genetic code facilitated strain promoted azide-alkyne cycloaddition to construct artificial complexes that are structurally integrated protein dimers and demonstrate functional synergy. Using fluorescent proteins sfGFP and Venus as models, homodimers and heterodimers are constructed that switched ON once assembled and display enhanced spectral properties. Symmetrical crosslinks are found to be important for functional enhancement. The determined molecular structure of one artific
The synthesis and bioactivity of zinc oxide nanoparticles has been extensively studied. The antibacterial activity of different antibiotics individually (ceftriaxone (C), chloramphenicol (CRO), penicillin (P) and amoxicillin (Ax)) and Zinc oxide nanoparticles (60μg/ml) in combination with the previously mentioned antibiotics has been demonstrated in the present study by using the disk diffusion assay method. The results showed a synergistic effect between Zinc oxide nanoparticles (ZnO NPs) and both Ax and P for most of the studied Gram-positive isolates (Staphylococcus aureus1, Staphylococcus aureus2, Staphylococcus epidermidis1, Staphylococcus epidermidis2, Enterococcus faecalis1, Enterococcus faecalis2 ) and between ZnO NPs and both C
... Show MoreThis study aims to find the chemosensitive dysfunction incidence in COVID-19-positive patients and its recovery.
We collected the data from sixty-five patients, all COVID-19 positive, quarantined in-hospital between 5 April 2020 and 17 May 2020, by a questionnaire distributed in the quarantine ward.
Smell dysfunction appeared in 89.23% with or without other symptoms of COVID-19. 39.66% of them recovered the sense of smell. Taste dysfunction found in 83.08% patients with other COVID-19 symptoms. Only 29.63% of them recovered. The recovery took 1–3 weeks, and most
Oscillation criteria are obtained for all solutions of the first-order linear delay differential equations with positive and negative coefficients where we established some sufficient conditions so that every solution of (1.1) oscillate. This paper generalized the results in [11]. Some examples are considered to illustrate our main results.
Most Internet of Vehicles (IoV) applications are delay-sensitive and require resources for data storage and tasks processing, which is very difficult to afford by vehicles. Such tasks are often offloaded to more powerful entities, like cloud and fog servers. Fog computing is decentralized infrastructure located between data source and cloud, supplies several benefits that make it a non-frivolous extension of the cloud. The high volume data which is generated by vehicles’ sensors and also the limited computation capabilities of vehicles have imposed several challenges on VANETs systems. Therefore, VANETs is integrated with fog computing to form a paradigm namely Vehicular Fog Computing (VFC) which provide low-latency services to mo
... Show MoreConstruction contractors usually undertake multiple construction projects simultaneously. Such a situation involves sharing different types of resources, including monetary, equipment, and manpower, which may become a major challenge in many cases. In this study, the financial aspects of working on multiple projects at a time are addressed and investigated. The study considers dealing with financial shortages by proposing a multi-project scheduling optimization model for profit maximization, while minimizing the total project duration. Optimization genetic algorithm and finance-based scheduling are used to produce feasible schedules that balance the finance of activities at any time w
Identification of complex communities in biological networks is a critical and ongoing challenge since lots of network-related problems correspond to the subgraph isomorphism problem known in the literature as NP-hard. Several optimization algorithms have been dedicated and applied to solve this problem. The main challenge regarding the application of optimization algorithms, specifically to handle large-scale complex networks, is their relatively long execution time. Thus, this paper proposes a parallel extension of the PSO algorithm to detect communities in complex biological networks. The main contribution of this study is summarized in three- fold; Firstly, a modified PSO algorithm with a local search operator is proposed
... Show More