Preferred Language
Articles
/
bsj-5069
Compression-based Data Reduction Technique for IoT Sensor Networks
...Show More Authors

Energy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the sensor data readings, after which a lossless LZW compression to compress the loss quantization output. Quantizing the sensor node data readings down to the alphabet size of SAX results in lowering, to the advantage of the best compression sizes, which contributes to greater compression from the LZW end of things. Also, another improvement was suggested to the CBDR technique which is to add a Dynamic Transmission (DT-CBDR) to decrease both the total number of data sent to the gateway and the processing required. OMNeT++ simulator along with real sensory data gathered at Intel Lab is used to show the performance of the proposed technique. The simulation experiments illustrate that the proposed CBDR technique provides better performance than the other techniques in the literature.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Oct 17 2011
Journal Name
Journal Of Engineering
MODIFIED TRAINING METHOD FOR FEEDFORWARD NEURAL NETWORKS AND ITS APPLICATION in 4-LINK SCARA ROBOT IDENTIFICATION
...Show More Authors

In this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha

... Show More
Preview PDF
Publication Date
Tue Jun 22 2021
Journal Name
Expert Systems
Hybrid intelligent technology for plant health using the fusion of evolutionary optimization and deep neural networks
...Show More Authors

Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2011
Journal Name
Journal Of Engineering
MODIFIED TRAINING METHOD FOR FEEDFORWARD NEURAL NETWORKS AND ITS APPLICATION in 4-LINK SCARA ROBOT IDENTIFICATION
...Show More Authors

In this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet func

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri May 01 2015
Journal Name
Journal Of Engineering
A Real-Coded Genetic Algorithm with System Reduction and Restoration for Rapid and Reliable Power Flow Solution of Power Systems
...Show More Authors

The paper presents a highly accurate power flow solution, reducing the possibility of ending at local minima, by using Real-Coded Genetic Algorithm (RCGA) with system reduction and restoration. The proposed method (RCGA) is modified to reduce the total computing time by reducing the system in size to that of the generator buses, which, for any realistic system, will be smaller in number, and the load buses are eliminated. Then solving the power flow problem for the generator buses only by real-coded GA to calculate the voltage phase angles, whereas the voltage magnitudes are specified resulted in reduced computation time for the solution. Then the system is restored by calculating the voltages of the load buses in terms

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 01 2016
Journal Name
International Journal Of Computer Science And Mobile Computing
Hybrid Color Image Compression of Hard & Soft Mixed Thresholding Techniques
...Show More Authors

Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
Development of an ANN Model for RGB Color Classification using the Dataset Extracted from a Fabricated Colorimeter
...Show More Authors

 

Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Dec 04 2016
Journal Name
Baghdad Science Journal
Mefenamic Acid Selective Membranes Sensor and Its Application to pharmaceutical Analysis
...Show More Authors

PVC membrane sensor for the selective determination of Mefenamic acid (MFA) was constructed. The sensor is based on ion association of MFA with Dodecaphospho molybdic acid (PMA) and Dodeca–Tungstophosphoric acid(PTA) as ion pairs. Nitro benzene (NB) and di-butyl phthalate (DBPH) were used as plasticizing agents in PVC matrix membranes. The specification of sensor based on PMA showed a linear response of a concentration range 1.0 × 10–2 –1.0 × 10–5 M, Nernstian slopes of 17.1-18.86 mV/ decade, detection limit of 7 × 10-5 -9.5 × 10 -7M, pH range 3 – 8 , with correlation coefficients lying between 0.9992 and 0.9976, respectively. By using the ionphore based on PTA gives a concentration range of 1.0 × 10–4 –1.0 × 10–5 M,

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Aug 27 2025
Journal Name
Baghdad Science Journal
A Clustering Technique Based on the Hard K-Means (H.KM.) Method to Determine the Governorate That Have More Influence for Spreading COVID-19 in the Kingdom of Saudi Arabia
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
A noval SVR estimation of figarch modal and forecasting for white oil data in Iraq
...Show More Authors

The purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals

... Show More
View Publication Preview PDF
Scopus
Publication Date
Sat May 09 2015
Journal Name
International Journal Of Innovations In Scientific Engineering
USING ARTIFICIAL NEURAL NETWORK TECHNIQUE FOR THE ESTIMATION OF CD CONCENTRATION IN CONTAMINATED SOILS
...Show More Authors

The aim of this paper is to design artificial neural network as an alternative accurate tool to estimate concentration of Cadmium in contaminated soils for any depth and time. First, fifty soil samples were harvested from a phytoremediated contaminated site located in Qanat Aljaeesh in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. The inputs are the soil depth, the time, and the soil parameters but the output is the concentration of Cu in the soil for depth x and time t. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Cadmium. The performance of the ANN technique was compared with the traditional laboratory inspecting

... Show More
View Publication