The products of composites material are very sesetive to many variables, such as manufacturing process, additive materials, …. etc. Filler or additive plays a major role to determine the formation of the properties and behavior of the composites. In this study, polyethylene terephthalate-based compounds were produced and characterized. The work is concerned to prepare samples of Polyethylene terephthalate (PET) - zinc-ferrite (ZnFe2O4) with different addition ratio as zinc-ferrite (1, 2, 5, 10, 15 and 20) wt% obtained from mixing the solution with a hot pressing method applied under optimum conditions. The densities of the composites for all samples were calculated. Through the work the diffusion of zinc-ferrite into the grain of Polyethylene terephthalate has been noted. Structural properties are studied by using X-ray powder pattern, the results of the XRD diffraction analysis showed that the structure for pure PET has four broad peaks at the (2θ=16.46°,17.45°, 22.72°,25.98°). The non-crystalline behavior of the polymer and the ceramic compound indicates the presence of a crystalline phase with a single cubic structure with a space group fd-3m (227)) (a=b=c=8.44 Å, V=601.45 (Å)³). While adding zinc-ferrite to PET in different concentrations to obtain (PET / ZnFe2O4) composites material will increase the intensity of the X-ray peaks, and change the location of the peaks with the addition of zinc-ferrite. It is noted that X-ray diffraction patterns for PET / ZnFe2O4 (20%) indicates that there was no apparent variation of the patterns of pure Zn-ferrite ceramic diffraction which showed that the crystalline structure remains stable in PET / ZnFe2O4. In addition, the electrical properties of the compounds represented by the dielectric constant (real and imaginary), dielectric loss ( tanδ) and the A.C conductivity as a function of a range of frequencies (50Hz-1MHz) have been measured. The results indicated that these properties increase with increasing concentrations of ceramic addition. On the other hand, these properties decrease with increasing frequency due to the change in polarization mechanisms. It has been proven that these prepared superposed materials possess good stability properties in a wide range of frequencies, making these polymeric overlays of wide use in many applications. As for the measurements of Shore D hardness, it has been shown that the hardness of the compounds increases with increasing ceramic concentrations.
Polymers, being one of the most important materials in dentistry, offer great physical and mechanical qualities, as well as good biocompatibility. Aim of this study was done to evaluate the Polyetherketoneketone and Polyetherketoneketone polymer composite material used as dental implant through tensile strength, Fourier Transform Infrared analysis FTIR, and wettability). Polyetherketoneketone composites (Polyetherketoneketone and Strontium-containing hydroxyapatite) with selected weight percentage ratios of (0, 10%, 20%, 30%), were fabricated using a compression molding technique”, The study involved Samples preparation (sheets) shaped and form into the desired shape according to standard for tests which included tensile strength,
... Show MoreThe study aimed to identify the role of public relations management in its dimensions (mental image, media, advertising, and the public) on green human resource management practices in Jordanian private hospitals in Amman, and this study relied on the quantitative approach (descriptive and analytical) to test hypotheses. Where the questionnaire was relied upon to collect data and their number was (1771) workers, and the study population consisted of workers in the hospitals that were studied on them and their number was 10 hospitals, where 316 questionnaires were distributed, 300 questionnaires were retrieved, and 16 questionnaires were not valid for analysis. That is, 91.7% of the sample, and the study relied on proportional stratified
... Show MoreIn the present study, the effect of Zinc nanoparticles on levels of (T3 , T4 and TSH) hormones was investigated. Zinc nanoparticles were synthesized by Laser induced plasma.The Nd: YAG Nd: YAG laser with a wavelength of 1064 nm was used to generate nanomaterials of the elements (zinc) upon collision with target atoms. Plasma generated by different laser intensity is generated. After confirming the preparation of zinc nanoparticles, XRD, AFM was examined, and the effect of these substances on the thyroid gland (T3, T4, TSH) was observed for two doses of each component (1 ml / kg, 4 ml / kg) after conducting a cytotoxicity examination of the lymphocytes of the rats extracted from Rat spleen was 1.8% less toxic to zinc, and as noted The
... Show MoreBackground: Chronic periodontitis is an inflammatory disease that affects the supporting tissues of the teeth and it’s common among adults. Smoking is an important risk factor for periodontitis induces alveolar bone loss. Alkaline phosphatase enzyme is involved in the destruction of the human periodontium. It is produced by many cells such as polymorphonuclear leukocytes, osteoblasts, macrophages and fibroblasts within the area of the periodontium and gingival crevice. Osteocalcin is one of the most abundant matrix proteins found in bones and the only matrix protein synthesized exclusively there. Smaller Osteocalcin fragments are found in areas of bone remodeling and are actually degradation products of the bone matrix.The purpose of
... Show MoreSludge from stone-cutting (SSC) factories and stone mines cannot be used as decorative stones, stone powder, etc. These substances are left in the environment and cause environmental problems. This study aim is to produce artificial stone composite (ASC) using sludge from stone cutting factories, cement, unsaturated resin, water, silicon carbide nanoparticles (SiC-NPs), and nano-graphene oxide (NGO) as fillers. Nano graphene oxide has a hydrophobic plate structure that water is not absorbed due to the lack of surface tension on these plates. NGO has a significant effect on the properties of artificial stone due to its high specific surface area and low density in the composite. Its uniform distribution in ASC is very low due to its hydropho
... Show MoreBackground: Polymethylmethacrylate (PMMA) has relatively unsatisfactory mechanical properties such as low flexural strength and impact strength also dimensional instability. Material and method: Zirconium silicate nanoparticles were coated with a layer of trimethoxysilylpropylmethacrylate (TMSPM) before sonication in monomer (MMA) with the percentages 1% and 1.5% by weight then mixed with powder using conventional procedure, (150) samples were prepared and divided into three groups, each group consisted of (50) samples, the first group prepared from PMMA without addition (control), another group with the addition of 1% wt Zrsio4 nanoparticles (experimental) and the third one with 1.5% wt Zrsio4 nanoparticles (experimental). Each group
... Show MoreIn this work, InSe thin films were deposited on glass substrates by thermal evaporation technique with a deposit rate of (2.5∓0.2) nm/sec. The thickness of the films was around (300∓10) nm, and the thin films were annealed at (100, 200 and 300)°C. The structural, morphology, and optical properties of Indium selenide thin films were studied using X-ray diffraction, Scanning Electron Microscope and UV–Visible spectrometry respectively. X-ray diffraction analyses showed that the as deposited thin films have amorphous structures. At annealing temperature of 100°C and 200°C, the films show enhanced crystalline nature, but at 300°C the film shows a polycrystalline structure with Rhombohedral phase with crystallites size of 17.459 nm. Th
... Show MoreDate palm fiber is one of the common wastes available in the M. E. countries essentially Iraq. The aim of search to investigate the performance and effects of fiber date palm on the mechanical properties of high strength concrete, this fiber was used in three ratio 2, 4 and 6 % by vol. of concrete at ages of (7, 28, 90) days. Results demonstrated improvement in the compressive strength increased 19.2 %, 23.6%, 24.9 % for 2%, 4%, 6% of fiber respectively at age 28 days. Flexural strength increases 47.6%, 66.2%, 93.8% form (2,4,6) % of fiber respectively at age 28 days. Density increase about 0.41%, 0, 61 % 0.69 % for (2,4,6) % of fiber respectively at age 28. Absorption water decrease