In this study, simple, low cost, precise and speed spectrophotometric methods development for evaluation of sulfacetamide sodium are described. The primary approach contains conversion of sulfacetamide sodium to diazonium salt followed by a reaction with p-cresol as a reagent in the alkaline media. The colored product has an orange colour with absorbance at λmax 450 nm. At the concentration range of (5.0-100 µg.mL-1), the Beer̆ s Low is obeyed with correlation coefficient (R2= 0.9996), limit of detection as 0.2142 µg.mL-1, limit of quantification as 0.707 µg.mL-1 and molar absorptivity as 1488.249 L.mol-1.cm-1. The other approach, cloud point extraction was utilized to an estimation of a trace amount of the colored product in the previous procedure followed by a measuring process with a UV-Vis spectrophotometer. The linearity of the calibration graph was above the range of (1.0-60 µg.mL-1), the correlation coefficient (R2= 0.9991) and molar absorptivity was 7417.622 L.mol-1.cm-1. The detection limit(LOD) and quantification limit(LOQ) were based to be 0.070 and 0.231 µg.mL-1 , respectively. This approach was successfully employed for sulfacetamide sodium detection within the pure and pharmaceutical formulation.
Double hydrothermal method was used to prepare nano gamma alumina using aluminum nitrate nano hydrate and sodium aluminate as an aluminum source, CTAB (cetyltrimethylammonium bromide) as surfactant, and variable acids: weak acids like; citric, and acitic acids, and strong acids like; hydrochloric and nitric acids as a bridge between aluminum salts and surfactant. Different crystallization times 12, 24, 48, and 72 hrs were applied. All the batches were prepared at pH equals to 9. XRD diffraction technique was used to investigate the crystalline nano gamma alumina pure from surfactant. N2 adsorption-desorption (BET) was used to measure the surface area and pore volume of the prepared nano alumina, the average p
... Show MoreAbstract: Background: Optical biosensors offer excellent properties and methods for detecting bacteria when compared to traditional analytical techniques. It allows direct detection of many biological and chemical materials. Bacteria are found in the human body naturally non-pathogenic and pathologically, as they are found in other living organisms. One of these bacteria is Escherichia coli (E. coli) which are found in the human body in its natural and pathogenic form. E.coli bacteria cause many diseases, including Stomach, intestines, urinary system infections, and others. The aim of this study: is sensing and differentiation between normal flora and pathogenic E.coli. Material and method:
... Show MoreThe current study used extracts from the aloe vera (AV) plant and the hibiscus sabdariffa flower to make Ag-ZnO nanoparticles (NPs) and Ag-ZnO nanocomposites (NCs). Ag/ZnO NCs were compared to Ag NPs and ZnO NPs. They exhibited unique properties against bacteria and fungi that aren't present in either of the individual parts. The Ag-ZnO NCs from AV showed the best performance against E. coli, with an inhibition zone of up to 27 mm, compared to the other samples. The maximum absorbance peaks were observed at 431 nm and 410 nm for Ag NPs, at 374 nm and 377 nm for ZnO NPs and at 384 nm and 391 nm for Ag-ZnO NCs using AV leaf extract and hibiscus sabdariffa flower extract, respectively. Using field emission-scanning electron microscopes (FE-
... Show MoreA gantry robot is one of the most common types of industrial robots with linear movement. This type of robot is also known as a Cartesian or linear robot. It is an automated industrial system that moves along linear paths, enabling it to create a 3D envelope of the space in which it operates. A robot of this type has a standardised configuration process because it can have several sets of axes, such as X, Y and Z. The gantry robot picks up products from several places, so it can search through various locations. Afterwards, it carefully deposits the products on a conveyor belt for the next stage of the procedure or final shipment. This integration enables continuous and automated material flow
... Show MoreThe research took the spatial autoregressive model: SAR and spatial error model: SEM in an attempt to provide practical evidence that proves the importance of spatial analysis, with a particular focus on the importance of using regression models spatial and that includes all of the spatial dependence, which we can test its presence or not by using Moran test. While ignoring this dependency may lead to the loss of important information about the phenomenon under research is reflected in the end on the strength of the statistical estimation power, as these models are the link between the usual regression models with time-series models. The spatial analysis had been applied to Iraq Household Socio-Economic Survey: IHS
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th
... Show More