Pulsed laser deposition (PLD) technique was applied to prepared Chromium oxide (Cr2O3) nanostructure doped with Titanium oxide (TiO2) thin films at different concentration ratios 3,5,7 and 9 wt % of TiO2. The effect of TiO2 dopant on the average size of crystallite of the synthesized nanostructures was examined by X-ray diffraction. The morphological properties were discussed using atomic force microscopy(AFM). Observed optical band gap value ranged from 2.68 eV to 2.55 eV by ultraviolet visible(UV-Vis.) absorption spectroscopy with longer wave length shifted in comparison with that of the bulk Cr2O3 ~3eV. This indicated that the synthesized samples are attributed to the enhancement of the quantum confinement effect. Gas response sensitivity, and recovery times of the sensor in the presence of NO2 gas were studied and discussed. In this work it is found that, the sensitivity increases when doping ratio increases from 3wt% to 5wt% of TiO2 and return to decrease over that. The optimum concentrations ratio for NO2 gas sensitivity is 5wt% of TiO2 and sensitivity is 168.75% at 200oC.
CuInSe2(CIS) thin films have been prepared by use vacuum thermal evaporation technique, of thickness750 nm with rate of deposition 1.8±0.1 nm/sec on glass substrate at room temperature and pressure (10-5) mbar. Heat treatment has been carried out in the range (400-600) K for all samples. The optical properties of the CIS thin films are been studied such as (absorption coefficient, refractive index, extinction coefficient, real and imaginary dielectric constant) by determined using Measurement absorption and transmission spectra. Results showed that through the optical constants we can make to control it are wide applications as an optoelectronic devices and photovoltaic applications.
This paper proposes feedback linearization control (FBLC) based on function approximation technique (FAT) to regulate the vibrational motion of a smart thin plate considering the effect of axial stretching. The FBLC includes designing a nonlinear control law for the stabilization of the target dynamic system while the closedloop dynamics are linear with ensured stability. The objective of the FAT is to estimate the cubic nonlinear restoring force vector using the linear parameterization of weighting and orthogonal basis function matrices. Orthogonal Chebyshev polynomials are used as strong approximators for adaptive schemes. The proposed control architecture is applied to a thin plate with a large deflection that stimulates the axial loadin
... Show MoreSpin coating technique used to prepare ZnPc, CdS and ZnPc/CdS blend thin films, these films annealed at 423K for 1h, 2h and 3h. Optical behavior of these films were examined using UV-Vis. and PL. The absorption spectrum of ZnPc shows a decreasing in absorption with the increase of annealing time while CdS spectrum give a clearly absorption peak at~510 nm. Energy gap of ZnPc increases from 1.41 to 1.52 eV by increasing the annealing time. Eg of CdS decrease by increasing annealing time, from 2.3 eV to 2.2 eV. The intensities of the peaks obtained from PL spectra were strongly dependent on annealing time and confirmed the results obtained from UV-Vis. D.C. conductivity measurement showed that all the thin films have two differen
... Show MoreIn this paper, a design of the broadband thin metamaterial absorber (MMA) is presented. Compared with the previously reported metamaterial absorbers, the proposed structure provides a wide bandwidth with a compatible overall size. The designed absorber consists of a combination of octagon disk and split octagon resonator to provide a wide bandwidth over the Ku and K bands' frequency range. Cheap FR-4 material is chosen to be a substate of the proposed absorber with 1.6 thicknesses and 6.5×6.5 overall unit cell size. CST Studio Suite was used for the simulation of the proposed absorber. The proposed absorber provides a wide absorption bandwidth of 14.4 GHz over a frequency range of 12.8-27.5 GHz with more than %90 absorp
... Show More(Sb2S3)1-xSnx thin films with different concentrations (0, 0.05 and
0.15) and thicknesses (300,500 and 700nm) have been deposited by
single source vacuum thermal evaporation onto glass substrates at
ambient temperature to study the effect of tin content, thickness and
on its structural morphology, and electrical properties. AFM study
revealed that microstructure parameters such as crystallite size, and
roughness found to depend upon deposition conditions. The DC
conductivity of the vacuum evaporated (Sb2S3)1-x Snx thin films was
measured in the temperature range (293-473)K and was found to
increase on order of magnitude with
The PbSe alloy was prepared in evacuated quarts tubs by the method of melt quenching from element, the PbSe thin films prepared by thermal evaporation method and deposited at different substrate temperature (Ts) =R.T ,373 and 473K . The thin films that deposited at room temperature (R.T=303)K was annealed at temperature, Ta= R.T, 373 and 473K . By depended on D.C conductivity measurements calculated the density of state (DOS), The density of extended state N(Eext) increases with increasing the Ts and Ta, while the density of localized state N(Eloc) is decreased . We investigated the absorption coefficient (?) that measurement from reflection and transmission spectrum result, and the effect of Ts and Ta on it , also we calculated the tai
... Show More