In this study, cadmium oxide (CdO) was deposited on glass bases by thermal chemical spraying technique at three concentrations (0.05, 0.1, 0.15) M and then was irradiated by CO2 laser with 10.6 μm wave length and 1W power. The results of the atomic force microscope AFM test showed that the surfaces of these CdO thin films were homogenous and that the laser irradiated effect resulted in decreasing the roughness of the surface as well as the heights of the granular peaks, indicating a greater uniformity and homogeneity of the surfaces. The optical properties were studied to determine laser effect. The results of optical tests of these thin films showed that the photoluminescence spectra and absorption shifted towards longer wavelengths with increased concentration, and the transmittance was high at high wave lengths. There was a decrease of energy gap values at (0.05, 0.15)M concentrations which were (2.1, 2.25)eV receptively, and an increase in the energy gap value at 0.1 M concentration which was 2.55 eV, and other optical properties have been studied in this paper .In general, we observe that the values of the optical constants of the concentrations (0.05, 0.15)M increase after laser irradiation and are lesser after irradiation at concentration 0.1 M.
Chlorine doped SnS have been prepared utilizing chemical spray pyrolysis. The effects of chlorine concentration on the optical constants were studied. It was seen that the transmittance decreased with doping, while reflectance, refractive index, extinction coefficient, real and imaginary parts of dielectric constant were increased as the doping percentage increased. The results show also that the skin depth decrease as the chlorine percentage increased which could be assure that it is transmittance related.
Background and Objective: Public demand for procedures to rejuvenate photodamaged facial skin have stimulated the use of fractional CO2 laser as a precise and predictable treatment modality. The purpose of this study was to assess the effect of fractional CO2 laser system for reducing periorbital rhytids.
Materials and Methods: twenty seven subjects with mild periocular wrinkles, and photoaged skin of the face were prospectively treated two to three times (according to clinical response) in the periorbital area with a fractional CO2 laser device equipped with a scanning hand piece. Improvements in eyelid wrinkles was evaluated clinically and photographically. Subjects also scored satisfaction and
... Show MoreThe optical detectors which had been used in medical applications, and especially in radioactive treatments, need to be modified studied for the effects of radiations on them. This study included preparation of the MnS thin films in a way that vacuum thermal evaporation process at room temperature 27°C with thickness (400+-10nm) nm and a sedimentation rate of 0.39nm/sec on glass floors. The thin films prepared as a detector and had to be treated with neutron irradiation to examine the results gained from this process. The results decay X-ray (XRD) showed that all the prepared thin films have a multi-crystalline structure with the dominance of the direction (111), the two samples were irradiated with a neutron irradiation source (241Am-9Be)
... Show MoreCadmium oxide (CdO) thin films were deposited using the sequencing ion layer adsorption and reaction (SILAR) method. In this study, the effect of the pH value of an aqueous solution of cadmium acetate at a concentration of 0.2 mol of the cadmium oxide film was determined. The solution source for the cadmium oxide film was cadmium ions and an aqueous ammonia solution. The CdO films were deposited on glass substrates at a temperature of 90 ℃. The cadmium oxide film thickness was determined by the weight difference method at pH values (7.2, 8.2). X-ray diffraction (XRD) and scanning electron microscopy (SEM) showed that the size of the crystals increased with the increase in the solution (pH). While the UV-visible spectra of the fil
... Show MoreThe optical properties for the components CuIn(SexTe1-x)2 thin films with both values of selenium content (x) [0.4 and 0.6] are studied. The films have been prepared by the vacuum thermal evaporation method with thickness of (250±5nm) on glass substrates. From the transmittance and absorbance spectra within the range of wavelength (400-900)nm, we determined the forbidden optical energy gap (Egopt) and the constant (B). From the studyingthe relation between absorption coefficient (α) photon energy, we determined the tails width inside the energy gap.
The results showed that the optical transition is direct; we also found that the optical energy gap increases with annealing temperature and selenium content (x). However, the width of l
Thin films whose compositions can be expressed by (GeS2)100-xGax (x=0, 6,12,18) formula were obtained by thermal evaporation technique of bulk material at a base pressure of ~10-5 torr. Optical transmission spectra of the films were taken in the range of 300-1100 nm then the optical band gap, tail width of localized states, refractive index, extinction coefficient were calculated. The optical constants were found to increase at low concentration of Ga (0 to12%) while they decreases with further addition of Ga. The optical band gap was found to change in opposite manner to that of optical constants. The variation in the optical parameters are explained in terms of average bond energy
... Show MoreIn this work, pure and Ag-doped nickel oxide (NiO) thin films were deposited on glass substrates with different dopant concentrations (0.1, 0.2, 0.3 and 0.4 wt.%) by pulsed-laser deposition (PLD) technique at room temperature. These films were annealed at temperature of 450 °C. The structural and optical properties of the prepared thin films were studied. It was found that annealing process has lead to increase the transmittance of the deposited films. Also, the transmittance was found to increase with doping concentration of silver in the deposited NiO films. The optical energy gap was decreased from 3.5 to 3.2 eV as the doping concentration was increased to 0.4 %.
The semiconductor ZnO is one of II – VI compound group, it is prepare as thin films by using chemical spray pyrolysis technique; the films are deposited onto glass substrate at 450 °C by using aqueous zinc chloride as a spray solution of molar concentration 0.1 M/L. Sample of the prepared film is irradiating by Gamma ray using CS 137, other sample is annealed at 550°C. The structure of the irradiated and annealed films are analyzed with X-ray diffraction, the results show that the films are polycrystalline in nature with preferred (002) orientation. The general morphology of ZnO films are imaged by using the Atomic Force Microscope (AFM), it constructed from nanostructure with dimensions in order of 77 nm.
The optical properties o
Nano-structural of vanadium pentoxide (V2O5) thin films were
deposited by chemical spray pyrolysis technique (CSPT). Nd and Ce
doped vanadium oxide films were prepared, adding Neodymium
chloride (NdCl3) and ceric sulfate (Ce(SO4)2) of 3% in separate
solution. These precursor solutions were used to deposit un-doped
V2O5 and doped with Nd and Ce films on the p-type Si (111) and
glass substrate at 250°C. The structural, optical and electrical
properties were investigated. The X-ray diffraction study revealed a
polycrystalline nature of the orthorhombic structure with the
preferred orientation of (010) with nano-grains. Atomic force
microscopy (AFM) was used to characterize the morphology of the
films. Un-do