In recent years, the positioning applications of Internet-of-Things (IoT) based systems have grown increasingly popular, and are found to be useful in tracking the daily activities of children, the elderly and vehicle tracking. It can be argued that the data obtained from GPS based systems may contain error, hence taking these factors into account, the proposed method for this study is based on the application of IoT-based positioning and the replacement of using IoT instead of GPS. This cannot, however, be a reason for not using the GPS, and in order to enhance the reliability, a parallel combination of the modern system and traditional methods simultaneously can be applied. Although GPS signals can only be accessed in open spaces, GPS devices are error-prone primarily when the receiver is located in an urban-canyons area, due to congestion and the possible interference. The outcome presents a redundancy-based model for improving the fault tolerance of IoT-based positioning systems. The simulation results show a 22.5% improvement in the fault tolerance of the IoT-based positioning system after applying the proposed validation mechanism, and a 77.4% improvement in this tolerance after applying for a more expensive module redundancy.
compound [1] was formed from the reaction of benzoin and benzaldehyde in the presence of ammonia, which was reacted with sodium hydride in DMF to obtain imidazole salt. This salt was reacted with adipoyl chloride to give compound [2]. Acid hydrazide derivative [3] was obtained from the reaction of compound [2] with hydrazine hydrate. After that Shiff bases [4-9] have been synthesized from the reaction of compound [3] with different aromatic aldehydes. These new formed compounds were diagnosed by 13C-NMR, 1H-NMR for some of them (in Ahl-Albate University in Jordan) and FT-IR spectroscopy (In Baghdad University). All of the prepared products have been studied their biological activities toward two kinds of bacteria. These products show
... Show MoreThis study includes design and synthesis of new non-steroidal anti-inflammatory agents (NSAIDs) with expected cyclooxygenase-2 (COX-2) selective inhibition to achieve better activity and low gastric side effects. Two series of compounds have been designed and synthesized as potential NSAIDs,these are: Salicylamide derivatives (compounds 3,4,5 ) and Diflunisal derivatives (compounds 10&11). In vivo acute anti-inflammatory effect of one of the synthesized agents (compound 3) was evaluated in the rat using egg-white induced paw edema model of inflammation. Preliminary pharmacological study revealed that compound 3 exhibited less anti-inflammatory effect compared to that of aspirin after
... Show More4, 4s (pyridine 2, 6 diylbis (1, 3, 4 oxadiazole 5, 2 diyl)) bisphenol monomer (3) was synthesized from cyclization of Ns2, Ns6 bis (4 hydroxybenzylidene) pyridine 2, 6 dicarbohydrazide (2) in the presence of bromine in glacialacetic acid. Newly five polymers (P1P5) were synthesized from reaction bis 1, 3, 4 oxadiazole bisphenolmonomer with five different di acid chloride. The antibacterial activity of the synthesized polymers was screened against gram positive and gram negative bacteria. Polymers P4 and P5 exhibited significant antibacterial against all microorganisms, as well these polymers showed highest antifungal activity.
New complexes of the some trivalent transition metal ions of the uracil such as [M(Ura)3Cl3] and mixed ligand metal complexes with uracil and oxalic acid [M(Ura)2(OA)(OH2)Cl].H2O type, where (Ura)=Uracil, (OA= Oxalic acid dihydrate, (M= Cr+3 and Fe+3) were synthesized and characterized by the elemental analysis, FT.IR, electronic spectra, mass spectra and magnetic susceptibility as well as the conductivity measurements. Six–coordinated metal complexes were suggested for the isolated complexes of Cr+3 and Fe+3 with molecular formulas dependent on the nature of uracil and oxalic acid present. The proposed molecular structure for all complexes with their ions is octahedral geometries. The antibacterial efficiency was tested of metal salts, l
... Show MoreBackground: A diverse group of bacteria live in biofilms in the oral cavity. On dental surfaces biofilms form plaque that is potentially involved in caries and periodontal diseases. Periodic studying of plaque microflora and their antimicrobial sensitivity patterns strongly affects the clinical practice in plaque-induced oral diseases. Materials and methods: Dental plaque samples were collected from 22 patients having ages ranged between 33 and 49 years with gingivitis that met the study criteria. Plaque, gingival and gingival bleeding indices (PI, GI, GBI) were measured for each patient. Laboratory procedures included microbiological examination of plaque samples followed by antibiotic sensitivity testing using disc diffusion method were
... Show MoreThe present work investigates the effect of magneto – hydrodynamic (MHD) laminar natural convection flow on a vertical cylinder in presence of heat generation and radiation. The governing equations which used are Continuity, Momentum and Energy equations. These equations are transformed to dimensionless equations using Vorticity-Stream Function method and the resulting nonlinear system
of partial differential equations are then solved numerically using finite difference approximation. A thermal boundary condition of a constant wall temperature is considered. A computer program (Fortran 90) was built to calculate the rate of heat transfer in terms of local Nusselt number, total mean Nusselt number, velocity distribution as well as te