Preferred Language
Articles
/
bsj-4882
An Efficient Image Encryption Using a Dynamic, Nonlinear and Secret Diffusion Scheme
...Show More Authors

The growing use of tele

This paper presents a new secret diffusion scheme called Round Key Permutation (RKP) based on the nonlinear, dynamic and pseudorandom permutation for encrypting images by block, since images are considered particular data because of their size and their information, which are two-dimensional nature and characterized by high redundancy and strong correlation. Firstly, the permutation table is calculated according to the master key and sub-keys. Secondly, scrambling pixels for each block to be encrypted will be done according the permutation table. Thereafter the AES encryption algorithm is used in the proposed cryptosystem by replacing the linear permutation of ShiftRows step with the nonlinear and secret permutation of RKP scheme; this change makes the encryption system depend on the secret key and allows both to respect the second Shannon’s theory and the Kerckhoff principle. Security analysis of cryptosystem demonstrates that the proposed diffusion scheme of RKP enhances the fortress of encryption algorithm, as can be observed in the entropy and other obtained values.

communications implementing electronic transfers of personal data, require reliable techniques and secure. In fact, the use of a communication network exposes exchanges to certain risks, which require the existence of adequate security measures. The data encryption is often the only effective way to meet these requirements. This paper present a cryptosystem by block for encrypting images, as images are considered particular data because of their size and their information, which are two dimensional nature and characterized by high redundancy and strong correlation. In this cryptosystem, we used a new dynamic diffusion technique called round key permutation, which consists to permute pixels of each bloc in a manner nonlinear, dynamic and random using permutation table calculated according to the master key and sub-keys. We use thereafter the AES encryption algorithm in our cryptosystem by replacing the linear permutation of ShiftRows with round key permutation technique; this changing makes the encryption scheme depend on encryption key. Security analysis of cryptosystem demonstrate that the modification made on using the proposed technique of Round Key Permutation enhances the fortress of encryption  algorithm,  as can be observed in the entropy and other obtained values.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Feb 21 2022
Journal Name
Applied Sciences
The Behavior of Hybrid Fiber-Reinforced Concrete Elements: A New Stress-Strain Model Using an Evolutionary Approach
...Show More Authors

Several stress-strain models were used to predict the strengths of steel fiber reinforced concrete, which are distinctive of the material. However, insufficient research has been done on the influence of hybrid fiber combinations (comprising two or more distinct fibers) on the characteristics of concrete. For this reason, the researchers conducted an experimental program to determine the stress-strain relationship of 30 concrete samples reinforced with two distinct fibers (a hybrid of polyvinyl alcohol and steel fibers), with compressive strengths ranging from 40 to 120 MPa. A total of 80% of the experimental results were used to develop a new empirical stress-strain model, which was accomplished through the application of the parti

... Show More
Scopus (35)
Crossref (32)
Scopus Clarivate Crossref
Publication Date
Wed Mar 01 2017
Journal Name
International Communications In Heat And Mass Transfer
Optimization, modeling and accurate prediction of thermal conductivity and dynamic viscosity of stabilized ethylene glycol and water mixture Al 2 O 3 nanofluids by NSGA-II using ANN
...Show More Authors

In this study, multi-objective optimization of nanofluid aluminum oxide in a mixture of water and ethylene glycol (40:60) is studied. In order to reduce viscosity and increase thermal conductivity of nanofluids, NSGA-II algorithm is used to alter the temperature and volume fraction of nanoparticles. Neural network modeling of experimental data is used to obtain the values of viscosity and thermal conductivity on temperature and volume fraction of nanoparticles. In order to evaluate the optimization objective functions, neural network optimization is connected to NSGA-II algorithm and at any time assessment of the fitness function, the neural network model is called. Finally, Pareto Front and the corresponding optimum points are provided and

... Show More
Crossref (117)
Crossref
Publication Date
Mon Aug 30 2021
Journal Name
Russian Electronic Journal Of Radiology
THE ROLE OF APPARENT DIFFUSION COEFFICIENT VALUE IN DIFFERENTIATING BENIGN FROM MALIGNANT SOFT TISSUE MASSES
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Mon Oct 01 2012
Journal Name
Computers & Mathematics With Applications
Boundary element formulations for the numerical solution of two-dimensional diffusion problems with variable coefficients
...Show More Authors

View Publication
Crossref (22)
Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Baghdad Science Journal
Developing Arabic License Plate Recognition System Using Artificial Neural Network and Canny Edge Detection
...Show More Authors

            In recent years, there has been expanding development in the vehicular part and the number of vehicles moving on the roads in all the sections of the country. Arabic vehicle number plate identification based on image processing is a dynamic area of this work; this technique is used for security purposes such as tracking of stolen cars and access control to restricted areas. The License Plate Recognition System (LPRS) exploits a digital camera to capture vehicle plate numbers is used as input to the proposed recognition system. Basically, the proposed system consists of three phases, vehicle license plate localization, character segmentation, and character recognition, the

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Detecting Textual Propaganda Using Machine Learning Techniques
...Show More Authors

Social Networking has dominated the whole world by providing a platform of information dissemination. Usually people share information without knowing its truthfulness. Nowadays Social Networks are used for gaining influence in many fields like in elections, advertisements etc. It is not surprising that social media has become a weapon for manipulating sentiments by spreading disinformation.  Propaganda is one of the systematic and deliberate attempts used for influencing people for the political, religious gains. In this research paper, efforts were made to classify Propagandist text from Non-Propagandist text using supervised machine learning algorithms. Data was collected from the news sources from July 2018-August 2018. After annota

... Show More
View Publication Preview PDF
Scopus (26)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
A study of Land Zoning in the base of Traffic Noise Pollution Levels using ArcGIS: Kirkuk City as a Case Study
...Show More Authors

This study is an approach to assign the land area of  Kirkuk city [ a city located in the northern of Iraq, 236 kilometers north of  Baghdad  and 83 kilometers  south of  Erbil [ Climatic atlas of  Iraq, 1941-1970  ]  into different  multi zones by using Satellite image and Arc Map10.3,  zones of different traffic noise pollutions. Land zonings process like what achieved in this paper will help and of it’s of a high interest point for the future of Kirkuk city especially urban

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sun May 02 2021
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Value at risk simulation in a fixed return stock portfolio using the Monte Carlo simulation model The concept of a bond portfolio
...Show More Authors

This research aims to predict the value of the maximum daily loss that the fixed-return securities portfolio may suffer in Qatar National Bank - Syria, and for this purpose data were collected for risk factors that affect the value of the portfolio represented by the time structure of interest rates in the United States of America over the extended period Between 2017 and 2018, in addition to data related to the composition of the bonds portfolio of Qatar National Bank of Syria in 2017, And then employing Monte Carlo simulation models to predict the maximum loss that may be exposed to this portfolio in the future. The results of the Monte Carlo simulation showed the possibility of decreasing the value at risk in the future due to the dec

... Show More
View Publication Preview PDF