Preferred Language
Articles
/
bsj-4857
Comparison of Some of Estimation methods of Stress-Strength Model: R = P(Y < X < Z)
...Show More Authors

In this study, the stress-strength model R = P(Y < X < Z)  is discussed as an important parts of reliability system by assuming that the random variables follow Invers Rayleigh Distribution. Some traditional estimation methods are used    to estimate the parameters  namely; Maximum Likelihood, Moment method, and Uniformly Minimum Variance Unbiased estimator and Shrinkage estimator using three types of shrinkage weight factors. As well as, Monte Carlo simulation are used to compare the estimation methods based on mean squared error criteria.  

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Dec 30 2024
Journal Name
Modern Sport
The Impact of a Psychological Counselling Program on Unconscious Conflicts and Free Will among Coaches of Selected Athletic Disciplines
...Show More Authors

هدف البحث إلى بناء مقياسين تخصصين للنزاعات اللاشعورية وحرية الإرادة لمدربي بعض ألعاب القوى والتعرف على مستوى كل منهما لديهم، وإعداد برنامج إرشادي نفسي مستند لرفع مستوى الحالات اللاشعورية وحرية الإرادة للمدربين الذين يعانون من انخفاض مستوى النزاعات اللاشعورية وحرية الإرادة، والتعرف على تأثير البرنامج الإرشادي نفسي في النزاعات اللاشعورية وحرية الإرادة لدى مدربي بعض ألعاب القوى، لتفترض بذلك الباحثة بإ

... Show More
View Publication
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Choosing the best method for estimating the survival function of inverse Gompertz distribution by using Integral mean squares error (IMSE)
...Show More Authors

In this research , we study the inverse Gompertz distribution (IG) and estimate the  survival function of the distribution , and the survival function was evaluated using three methods (the Maximum likelihood, least squares, and percentiles estimators) and choosing the best method estimation ,as it was found that the best method for estimating the survival function is the squares-least method because it has the lowest IMSE and for all sample sizes

View Publication Preview PDF
Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
An improved neurogenetic model for recognition of 3D kinetic data of human extracted from the Vicon Robot system
...Show More Authors

These days, it is crucial to discern between different types of human behavior, and artificial intelligence techniques play a big part in that.  The characteristics of the feedforward artificial neural network (FANN) algorithm and the genetic algorithm have been combined to create an important working mechanism that aids in this field. The proposed system can be used for essential tasks in life, such as analysis, automation, control, recognition, and other tasks. Crossover and mutation are the two primary mechanisms used by the genetic algorithm in the proposed system to replace the back propagation process in ANN. While the feedforward artificial neural network technique is focused on input processing, this should be based on the proce

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Fri Apr 21 2023
Journal Name
Aip Conference Proceedings
Efficient computational methods for solving the nonlinear initial and boundary value problems
...Show More Authors

In this paper, three approximate methods namely the Bernoulli, the Bernstein, and the shifted Legendre polynomials operational matrices are presented to solve two important nonlinear ordinary differential equations that appeared in engineering and applied science. The Riccati and the Darcy-Brinkman-Forchheimer moment equations are solved and the approximate solutions are obtained. The methods are summarized by converting the nonlinear differential equations into a nonlinear system of algebraic equations that is solved using Mathematica®12. The efficiency of these methods was investigated by calculating the root mean square error (RMS) and the maximum error remainder (𝑀𝐸𝑅n) and it was found that the accuracy increases with increasi

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sun Jun 12 2011
Journal Name
Baghdad Science Journal
Satellite Images Unsupervised Classification Using Two Methods Fast Otsu and K-means
...Show More Authors

Two unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.

View Publication Preview PDF
Crossref
Publication Date
Wed Feb 14 2024
Journal Name
Aip Conference Proceedings
Segmentation Moon Images Using Different Segmentation Methods and Isolate the Lunar Craters
...Show More Authors

Segmentation is the process of partition digital images into different parts depending on texture, color, or intensity, and can be used in different fields in order to segment and isolate the area to be partitioned. In this work images of the Moon obtained through observations in Astronomy and space dep. College of science university of Baghdad by ( Toward space telescopes and widespread used of a CCD camera) . Different segmentation methods were used to segment lunar craters. Different celestial objects cause craters when they crash into the surface of the Moon like asteroids and meteorites. Thousands of craters appears on the Moon's surface with ranges in size from meter to many kilometers, it provide insights into the age and ge

... Show More
Scopus (2)
Scopus Crossref
Publication Date
Tue Dec 03 2013
Journal Name
Baghdad Science Journal
Satellite Images Unsupervised Classification Using Two Methods Fast Otsu and K-means
...Show More Authors

Publication Date
Sun Jan 01 2017
Journal Name
Journal Of Sensors
Sequential Monte Carlo Localization Methods in Mobile Wireless Sensor Networks: A Review
...Show More Authors

The advancement of digital technology has increased the deployment of wireless sensor networks (WSNs) in our daily life. However, locating sensor nodes is a challenging task in WSNs. Sensing data without an accurate location is worthless, especially in critical applications. The pioneering technique in range-free localization schemes is a sequential Monte Carlo (SMC) method, which utilizes network connectivity to estimate sensor location without additional hardware. This study presents a comprehensive survey of state-of-the-art SMC localization schemes. We present the schemes as a thematic taxonomy of localization operation in SMC. Moreover, the critical characteristics of each existing scheme are analyzed to identify its advantages

... Show More
View Publication Preview PDF
Scopus (24)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Wed Apr 15 2020
Journal Name
Al-mustansiriyah Journal Of Science
Adaptation Proposed Methods for Handling Imbalanced Datasets based on Over-Sampling Technique
...Show More Authors

Classification of imbalanced data is an important issue. Many algorithms have been developed for classification, such as Back Propagation (BP) neural networks, decision tree, Bayesian networks etc., and have been used repeatedly in many fields. These algorithms speak of the problem of imbalanced data, where there are situations that belong to more classes than others. Imbalanced data result in poor performance and bias to a class without other classes. In this paper, we proposed three techniques based on the Over-Sampling (O.S.) technique for processing imbalanced dataset and redistributing it and converting it into balanced dataset. These techniques are (Improved Synthetic Minority Over-Sampling Technique (Improved SMOTE),  Border

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Efficient computational methods for solving the nonlinear initial and boundary value problems
...Show More Authors

Scopus (2)
Crossref (1)
Scopus Crossref