Although the number of stomach tumor patients reduced obviously during last decades in western countries, but this illness is still one of the main causes of death in developing countries. The aim of this research is to detect the area of a tumor in a stomach images based on fuzzy clustering. The proposed methodology consists of three stages. The stomach images are divided into four quarters and then features elicited from each quarter in the first stage by utilizing seven moments invariant. Fuzzy C-Mean clustering (FCM) was employed in the second stage for each quarter to collect the features of each quarter into clusters. Manhattan distance was calculated in the third stage among all clusters' centers in all quarters to disclosure of the quarter that contains a tumor based on the centroid value of the cluster in this quarter, which is far from the centers of the remaining quarters. From the calculations conducted on several images' quarters, the experimental outcomes show that the centroid value of the cluster in each quarter was greater than 0.9 if this quarter did not contain a tumor while the value of the centroid value for the cluster containing a tumor was less than 0.4.For examples, in a quarter no.1 for STOMACH_1 medical image, the centroid value of the cluster was 0.973 while the value of the cluster centroid in quarter no.3 was 0.280. For this reason the tumor area was found in quarter no.(3) of the medical image STOMACH_1. Also, the centroid value of the cluster in a quarter no.2 was 0.948 for STOMACH_2 while, the value of the cluster centroid in quarter no.4 was 0.397. For this reason the tumor area was found in a quarter no.4 of the medical image STOMACH_2.
In general, the importance of cluster analysis is that one can evaluate elements by clustering multiple homogeneous data; the main objective of this analysis is to collect the elements of a single, homogeneous group into different divisions, depending on many variables. This method of analysis is used to reduce data, generate hypotheses and test them, as well as predict and match models. The research aims to evaluate the fuzzy cluster analysis, which is a special case of cluster analysis, as well as to compare the two methods—classical and fuzzy cluster analysis. The research topic has been allocated to the government and private hospitals. The sampling for this research was comprised of 288 patients being treated in 10 hospitals. As t
... Show MoreThree Spirurid nematodes: Amidostomoides acutum (Lundahl,1848) Seurat, 1918, Epomidiostomum uncinatum (Lundahl,1848) Seurat, 1918 and Tetrameres sp. Creplin,1846 were isolated from the stomach (provenrticulus and gizzard) of the shoveler Anas clypeata from central Iraq. A brief description, morphometric and meristic characters for the nematodes were provided.Incidence of the three nematodes discussed with pertinent literatures.
The purpose of this paper is to introduce and study the concepts of fuzzy generalized open sets, fuzzy generalized closed sets, generalized continuous fuzzy proper functions and prove results about these concepts.
Before displaying that study we must clarify the nature of this area, wonderful, strange and great world of AL-Bateeha. Its life was simple, easy and comfortable –Human beings in this world were self-sufficient with regards to food, drinks and all other life requirements because and that of presence so many creatures there, for example, birds, fish and lots of plants that humans used as food for them and their animals. Therefore that area formed an isolated environment and far from incursion and uneasy to control
CD63 is -one of the tetraspanin family proteins, which are regarded as: hallmark exosomal markers because it is absent from other types of vesicles. It is expressed in the cell membrane of cancer cells, and cytoplasm of stromal cells. Objective: To assess CD63 expression in gastric cancer (GC) patients, and detected if it could be used as a predictive marker. Furthermore, the current study aimed to find the correlation between CD63 expression and clinicopathological parameters as: gender, age, invasion depth, histopathological type, involvement of lymph nodes, grade and stages of GC (TNM). The current study is a retrospective study in the period time from (2018 to-2020); 50 randomly patients formalin-fixed paraffin embedded blocks (FFPE)
... Show MoreThe purpose of this paper is to build a simulation model by using HEC-RAS software to simulate the reality of water movement in the main river of Basra City (South of Iraq) which is known as Siraji-Khoura River. The main objective of the simulation is to detect areas where the water cycle is interrupted in some stations of the river stream, as this river has become an outlet for the disposal of sewage, leading to pollution and causing weakness in some sections of the river & obstructing the water cycle that takes place between this river and Shatt al – Arab river. A field survey data of the river and its banks were adopted to derive the grades, longitudinal and cross sections of the river, these data included three-dimensional coordinates
... Show MoreThe tagged search (The aesthetic images in Mohammed Thanoun graphic) four chapters, Chapter I was concerned the statement of the research problem, the research importance and it’s needed, the goal of research in identifying the aesthetic images in the graphic of the artist's, the research limits, and identifying the most important terms, chapter II came with theoretical framework and included three chapters: chapter I was interested in the aesthetic concept. chapter II is the image aesthetic in the graphic, and chapter III is the artist experience, Chapter III specializes in research procedures: community, sample, curriculum, tool, and sample analysis. Chapter IV ended with results, including: dynamic research sample illustrated of the
... Show MoreSemantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s
... Show MoreThe study aimed to assess the frequency of invasive fungal infection in patients with respiratory diseases by conventional and molecular methods. This study included 117 Broncho alveolar lavage (BAL) samples were collected from patients with respiratory disease (79 male and 38 female) with ages ranged between (20-80) years, who attended Medicine Baghdad Teaching hospital and AL-Emamain AL-Khadhymian Medical City, during the period from September 2019 to April 2020. The results in PCR versus culture methods in this study showed that out of 117 samples of fungal infections 30(25.6 %) were detected by culture method, while the 24(20.5%) samples were detected by PCR technique, the most commonly diagnosed pathogenic fungi is Candida spp.
... Show MoreAbstract Background: This in-vitro study was to evaluated bitewing radiograph and tactile examination for detection secondary caries adjacent to amalgam restorations. Material and method: Sixty primary extracted molars with class I and class II amalgam restorations were selected from children, and examined by bitewing radiographs were taken by using film holders and interpreted on a backlit screen without magnification. Then, we used tactile examination with blunt probe. Result: The result of this study showed that the best cut-off points for the sample were found by a Receiver Operator Characteristic (ROC) analysis, and the area under the ROC curve and the sensitivity, specificity and accuracy of the techniques were calculated for enamel (
... Show More