In many applications such as production, planning, the decision maker is important in optimizing an objective function that has fuzzy ratio two functions which can be handed using fuzzy fractional programming problem technique. A special class of optimization technique named fuzzy fractional programming problem is considered in this work when the coefficients of objective function are fuzzy. New ranking function is proposed and used to convert the data of the fuzzy fractional programming problem from fuzzy number to crisp number so that the shortcoming when treating the original fuzzy problem can be avoided. Here a novel ranking function approach of ordinary fuzzy numbers is adopted for ranking of triangular fuzzy numbers with simpler and easier calculations as well as shortening in the procedures. The fuzzy fractional programming problem is the first reduced to a fractional programming problem and then solved with the technique to obtain the optimal solution. It has a power to give a best solution for supporting the solution theory proposed in this work, some numerical fuzzy fractional programming problem are included to ensure the advantage, efficiency and accuracy of the suggested algorithm. In addition, this research paper describes a comparison between our optimal solutions with other existing solutions for inequalities constrains fuzzy fractional program.
Research Summary
First: the problem of research and its importance
The teacher's success in facilitating the students' learning and growth according to the educational and educational goals set out, he must identify the problems of discipline of students in the classroom in terms of sources and reasons and types and methods of prevention and treatment and the teacher to remember that success in his teaching and instruction is not completed more fully once he has the information And knowledge of the subject of the lesson, but must understand the dynamics of the group (class group) and master the skills of classroom management, su
... Show MoreThe current study aims to examine the level of problems faced by university students in distance learning, in addition to identify the differences in these problems in terms of the availability of internet services, gender, college, GPA, interactions, academic cohort, and family economic status. The study sample consisted of (3172) students (57.3% females). The researchers developed a questionnaire with (32) items to measure distance learning problems in four areas: Psychological (9 items), academic (10 items), technological (7 items), and study environment (6 items). The responses are scored on a (5) point Likert Scale ranging from 1 (strongly disagree) to 5 (strongly agree). Means, standard deviations, and Multivariate Analysis of Vari
... Show MoreQuadrotors are coming up as an attractive platform for unmanned aerial vehicle (UAV) research, due to the simplicity of their structure and maintenance, their ability to hover, and their vertical take-off and landing (VTOL) capability. With the vast advancements in small-size sensors, actuators, and processors, researchers are now focusing on developing mini UAV’s to be used in both research and commercial applications. This work presents a detailed mathematical nonlinear dynamic model of the quadrotor which is formulated using the Newton-Euler method. Although the quadrotor is a 6 DOF under-actuated system, the derived rotational subsystem is fully actuated, while the translational subsystem is under-actuated. The der
... Show MoreEmergency vehicle (EV) services save lives around the world. The necessary fast response of EVs requires minimising travel time. Preempting traffic signals can enable EVs to reach the desired location quickly. Most of the current research tries to decrease EV delays but neglects the resulting negative impacts of the preemption on other vehicles in the side roads. This paper proposes a dynamic preemption algorithm to control the traffic signal by adjusting some cycles to balance between the two critical goals: minimal delay for EVs with no stop, and a small additional delay to the vehicles on the side roads. This method is applicable to preempt traffic lights for EVs through an Intelli
Recently Genetic Algorithms (GAs) have frequently been used for optimizing the solution of estimation problems. One of the main advantages of using these techniques is that they require no knowledge or gradient information about the response surface. The poor behavior of genetic algorithms in some problems, sometimes attributed to design operators, has led to the development of other types of algorithms. One such class of these algorithms is compact Genetic Algorithm (cGA), it dramatically reduces the number of bits reqyuired to store the poulation and has a faster convergence speed. In this paper compact Genetic Algorithm is used to optimize the maximum likelihood estimator of the first order moving avergae model MA(1). Simulation results
... Show MoreChoosing antimicrobials is a common dilemma when the expected rate of bacterial resistance is high. The observed resistance values in unequal groups of isolates tested for different antimicrobials can be misleading. This can affect the decision to recommend one antibiotic over the other. We analyzed recalled data with the statistical consideration of unequal sample groups. Data was collected concerning children suspected to have typhoid fever at Al Alwyia Pediatric Teaching Hospital in Baghdad, Iraq. The study period extended from September 2021 to September 2022. A novel algorithm was developed to compare the drug sensitivity among unequal numbers of Salmonella typhi (S. Typhi) isolates tested with different antibacterials.
... Show MoreA two time step stochastic multi-variables multi-sites hydrological data forecasting model was developed and verified using a case study. The philosophy of this model is to use the cross-variables correlations, cross-sites correlations and the two steps time lag correlations simultaneously, for estimating the parameters of the model which then are modified using the mutation process of the genetic algorithm optimization model. The objective function that to be minimized is the Akiake test value. The case study is of four variables and three sites. The variables are the monthly air temperature, humidity, precipitation, and evaporation; the sites are Sulaimania, Chwarta, and Penjwin, which are located north Iraq. The model performance was
... Show MoreMost of the medical datasets suffer from missing data, due to the expense of some tests or human faults while recording these tests. This issue affects the performance of the machine learning models because the values of some features will be missing. Therefore, there is a need for a specific type of methods for imputing these missing data. In this research, the salp swarm algorithm (SSA) is used for generating and imputing the missing values in the pain in my ass (also known Pima) Indian diabetes disease (PIDD) dataset, the proposed algorithm is called (ISSA). The obtained results showed that the classification performance of three different classifiers which are support vector machine (SVM), K-nearest neighbour (KNN), and Naïve B
... Show More