In many applications such as production, planning, the decision maker is important in optimizing an objective function that has fuzzy ratio two functions which can be handed using fuzzy fractional programming problem technique. A special class of optimization technique named fuzzy fractional programming problem is considered in this work when the coefficients of objective function are fuzzy. New ranking function is proposed and used to convert the data of the fuzzy fractional programming problem from fuzzy number to crisp number so that the shortcoming when treating the original fuzzy problem can be avoided. Here a novel ranking function approach of ordinary fuzzy numbers is adopted for ranking of triangular fuzzy numbers with simpler and easier calculations as well as shortening in the procedures. The fuzzy fractional programming problem is the first reduced to a fractional programming problem and then solved with the technique to obtain the optimal solution. It has a power to give a best solution for supporting the solution theory proposed in this work, some numerical fuzzy fractional programming problem are included to ensure the advantage, efficiency and accuracy of the suggested algorithm. In addition, this research paper describes a comparison between our optimal solutions with other existing solutions for inequalities constrains fuzzy fractional program.
AA Abbass, HL Hussein, WA Shukur, J Kaabi, R Tornai, Webology, 2022 Individual’s eye recognition is an important issue in applications such as security systems, credit card control and guilty identification. Using video images cause to destroy the limitation of fixed images and to be able to receive users’ image under any condition as well as doing the eye recognition. There are some challenges in these systems; changes of individual gestures, changes of light, face coverage, low quality of video images and changes of personal characteristics in each frame. There is a need for two phases in order to do the eye recognition using images; revelation and eye recognition which will use in the security systems to identify the persons. The mai
... Show MoreIn this paper,the homtopy perturbation method (HPM) was applied to obtain the approximate solutions of the fractional order integro-differential equations . The fractional order derivatives and fractional order integral are described in the Caputo and Riemann-Liouville sense respectively. We can easily obtain the solution from convergent the infinite series of HPM . A theorem for convergence and error estimates of the HPM for solving fractional order integro-differential equations was given. Moreover, numerical results show that our theoretical analysis are accurate and the HPM can be considered as a powerful method for solving fractional order integro-diffrential equations.
... Show MoreThe aim of this paper is to estimate a nonlinear regression function of the Export of the crude oil Saudi (in Million Barrels) as a function of the number of discovered fields.
Through studying the behavior of the data we show that its behavior was not followed a linear pattern or can put it in a known form so far there was no possibility to see a general trend resulting from such exports.
We use different nonlinear estimators to estimate a regression function, Local linear estimator, Semi-parametric as well as an artificial neural network estimator (ANN).
The results proved that the (ANN) estimator is the best nonlinear estimator am
... Show MoreWe have presented the distribution of the exponentiated expanded power function (EEPF) with four parameters, where this distribution was created by the exponentiated expanded method created by the scientist Gupta to expand the exponential distribution by adding a new shape parameter to the cumulative function of the distribution, resulting in a new distribution, and this method is characterized by obtaining a distribution that belongs for the exponential family. We also obtained a function of survival rate and failure rate for this distribution, where some mathematical properties were derived, then we used the method of maximum likelihood (ML) and method least squares developed (LSD) to estimate the parameters an
... Show MoreThe consensus algorithm is the core mechanism of blockchain and is used to ensure data consistency among blockchain nodes. The PBFT consensus algorithm is widely used in alliance chains because it is resistant to Byzantine errors. However, the present PBFT (Practical Byzantine Fault Tolerance) still has issues with master node selection that is random and complicated communication. The IBFT consensus technique, which is enhanced, is proposed in this study and is based on node trust value and BLS (Boneh-Lynn-Shacham) aggregate signature. In IBFT, multi-level indicators are used to calculate the trust value of each node, and some nodes are selected to take part in network consensus as a result of this calculation. The master node is chosen
... Show MoreThe aim of this paper is to shed the light on the concepts of agency theory by measuring one of the problems that arise from it, which is represented by earnings management (EM) practices. The research problem is demonstrated by the failure of some Iraqi banks and their subsequent placement under the supervision of the Central Bank of Iraq, which was attributed, in part, to the inadequacy of the agency model in protecting stakeholders in shareholding institutions, as well as EM, pushed professional institutions to adopt the corporate governance model as a method to regulate the problem of accounting information asymmetry between the parties to the agency. We are using the Beneish M-score model and the financial analysis equations in
... Show MoreThe paper is devoted to solve nth order linear delay integro-differential equations of convolution type (DIDE's-CT) using collocation method with the aid of B-spline functions. A new algorithm with the aid of Matlab language is derived to treat numerically three types (retarded, neutral and mixed) of nth order linear DIDE's-CT using B-spline functions and Weddle rule for calculating the required integrals for these equations. Comparison between approximated and exact results has been given in test examples with suitable graphing for every example for solving three types of linear DIDE's-CT of different orders for conciliated the accuracy of the results of the proposed method.