Researchers used different methods such as image processing and machine learning techniques in addition to medical instruments such as Placido disc, Keratoscopy, Pentacam;to help diagnosing variety of diseases that affect the eye. Our paper aims to detect one of these diseases that affect the cornea, which is Keratoconus. This is done by using image processing techniques and pattern classification methods. Pentacam is the device that is used to detect the cornea’s health; it provides four maps that can distinguish the changes on the surface of the cornea which can be used for Keratoconus detection. In this study, sixteen features were extracted from the four refractive maps along with five readings from the Pentacam software. The classifiers utilized in our study are Support Vector Machine (SVM) and Decision Trees classification accuracy was achieved 90% and 87.5%, respectively of detecting Keratoconus corneas. The features were extracted by using the Matlab (R2011 and R 2017) and Orange canvas (Pythonw).
Image is an important digital information that used in many internet of things (IoT) applications such as transport, healthcare, agriculture, military, vehicles and wildlife. etc. Also, any image has very important characteristic such as large size, strong correlation and huge redundancy, therefore, encrypting it by using single key Advanced Encryption Standard (AES) through IoT communication technologies makes it vulnerable to many threats, thus, the pixels that have the same values will be encrypted to another pixels that have same values when they use the same key. The contribution of this work is to increase the security of transferred image. This paper proposed multiple key AES algorithm (MECCAES) to improve the security of the tran
... Show MoreAlzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of
... Show MoreOut of 150 clinical samples, 50 isolates of Klebsiella pneumoniae were identified according to morphological and biochemical properties. These isolates were collected from different clinical samples, including 15 (30%) urine, 12 (24%) blood, 9 (18%) sputum, 9 (18%) wound, and 5 (10%) burn. The minimum inhibitory concentrations (MICs) assay revealed that 25 (50%) of isolates were resistant to gentamicin (≥16µg/ml), 22 (44%) of isolates were resistant to amikacin (≥64 µg/ml), 21 (42%) of isolates were resistant to ertapenem (≥8 µg/ml), 18 (36%) of isolates were resistant to imipenem (4- ≥16µg/ml), 43 (86%) of isolates were resistant to ceftriaxone (4- ≥64 µg/ml), 42 (84%) of isolates were resistant to ceftazidime (1
... Show MoreDisease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreThe proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue
... Show MoreDiode lasers are becoming popular in periodontal surgery due to their highly absorption by pigments such as melanin and hemoglobin their weak absorption by water and hydroxyapatite makes them safe to be used around dental hard tissues. Objective: The aim of the present study was to evaluate the efficiency of diode laser in performing gingivectomy in comparison to conventional scalpel technique in patients with chronic inflammatory enlargement. Materials and methods: Thirty patients were selected for this study. All of them required surgical treatment of gingival enlargements and were randomly divided into two groups: Control group (treated by scalpel and include sixteen patients) and study group (treated with diode laser 940nm and includ
... Show MoreEach phenomenon contains several variables. Studying these variables, we find mathematical formula to get the joint distribution and the copula that are a useful and good tool to find the amount of correlation, where the survival function was used to measure the relationship of age with the level of cretonne in the remaining blood of the person. The Spss program was also used to extract the influencing variables from a group of variables using factor analysis and then using the Clayton copula function that is used to find the shared binary distributions using multivariate distributions, where the bivariate distribution was calculated, and then the survival function value was calculated for a sample size (50) drawn from Yarmouk Ho
... Show MoreThe catalytic cracking of three feeds of extract lubricating oil, that produced as a by-product from the process of furfural extraction of lubricating oil base stock in AL-Dura refinery at different operating condition, were carried out at a fixed bed laboratory reactor. The initial boiling point for these feeds was 140 ºC for sample (1), 86 ºC for sample (2) and 80 ºC for sample (3). The catalytic cracking processes were carried out at temperature range 325-400 ºC and initially at atmospheric pressure after 30 minutes over 9.88 % HY-zeolite catalyst load. The comparison between the conversion at different operating conditions of catalytic cracking processes indicates that a high yield was obtained at 375°C, according to gasoline pr
... Show MoreThe study aimed to identify the treatment of the press image of the Great Return Marches in the French international news agency AFP by knowing the most important issues, their direction and the degree of interest in them. The study belongs to the descriptive research, and used the survey method, within the context of the content analysis method, and the researcher relied on the content analysis form tool and the interview tool to collect data. The study population is represented in the photos published by the French News Agency about the Great Return Marches during the period (end of March / 2018 until the end of November / 2019. The researcher chose an intentional sample using the Complete Census method. The study material represented
... Show More