Antibiotic resistance is a problem of deep scientific concern both in hospital and community settings. Rapid detection in clinical laboratories is essential for the judicious recognition of antimicrobial resistant organisms. So, the growth of Uropathgenic Escherichia coli (UPEC) isolates with Multidrug-resistant (MDR) and Extensively Drug-resistant (XDR) profiles that thwart therapy for (UTIs) has been detected and has straight squeezed costs and extended hospital stays. This study aims to detect MDR- and XDR-UPEC isolates. Out of 42 UPEC clinical isolates were composed from UTI patients. The bacterial strains were recognized by standard laboratory protocols. Susceptibility to antibiotic was measured by the standard disk diffusion method Out of 42 Uropathogenic E. coli, 37 (88.09%) were found to be MDR while 5 isolates (11.90%) were XDR. The present study concluded high prevalence of uropathogenic Escherichia coli (UPEC) with Multidrug-resistant (MDR) isolated from urinary tract infection in Babylon province – Iraq.
The real and imaginary part of complex dielectric constant for InAs(001) by adsorption of oxsagen atoms has been calculated, using numerical analysis method (non-linear least square fitting). As a result a mathematical model built-up and the final result show a fairly good agreement with other genuine published works.
Recently, numerous the generalizations of Hurwitz-Lerch zeta functions are investigated and introduced. In this paper, by using the extended generalized Hurwitz-Lerch zeta function, a new Salagean’s differential operator is studied. Based on this new operator, a new geometric class and yielded coefficient bounds, growth and distortion result, radii of convexity, star-likeness, close-to-convexity, as well as extreme points are discussed.
Euphrates River extends about 125 km within the study area located in Annassiriyah City, Dhi Qar Governorate, Iraq. The impact of the seven hydraulic structures on the discharge capacity of the Euphrates River needs to be considered. The main objectives of this research are to increase the discharge capacity of Euphrates River within Annassiriyah City during flood seasons and study the impact of these hydraulic structures on the river capacity by using HEC-RAS 5.0.3 software. Five scenarios were simulated to study the different current condition of Euphrates River within Annassiriyah City. Other additional four scenarios were implemented through river training to increase the river capacity to 1300 m³/s; it is the flood
... Show MoreExperimental tests were conducted to study the behavior of skirted foundations rested on dry medium sandy soil subjected to vertical and inclined loads. To achieve this goal, a small-scale physical model was designed and performed which contained an aluminum circular footing (100 mm) in diameter and (10 mm) in thickness and skirts with different heights, local medium poorly graded dry sand is placed in a steel soil container (2 mm) thick with internal dimensions (1000 mm x 1000 mm in cross section and 800 mm in height). The main objective of this study was to evaluate the response of skirt attached to the foundation at different skirt (L/D) ratios (0.0, 0.5, 1.0 and 1.5) and is subjected to point load at different angles of inclinat
... Show MoreThis paper deals with a Twin Rotor Aerodynamic System (TRAS). It is a Multi-Input Multi-Output (MIMO) system with high crosscoupling between its two channels. It proposes a hybrid design procedure that combines frequency response and root locus approaches. The proposed controller is designated as PID-Lead Compensator (PIDLC); the PID controller was designed in previous work using frequency response design specifications, while the lead compensator is proposed in this paper and is designed using the root locus method. A general explicit formula for angle computations in any of the four quadrants is also given. The lead compensator is designed by shifting the dominant closed-loop poles slightly to the left in the s-plane. This has the effect
... Show MoreThe pumping station became widely used in many fields. Free surface vortices at intakes of pumps are not favorable. It may cause noise, excessive vibration, damage to the pumping structure, reduction in efficiency and flow for hydro-turbines, etc. One of the important problems encountered during the pump intake design is the depth of submergence and other design parameters to avoid strong free-surface vortices formation. This study aims to compute the critical submergence depth with some geometrical and hydraulic limitations by using Computational Fluid Dynamic (CFD) package. The mathematical model was validated with a laboratory model that had been conducted. The model of three intake pipes was investigated under five d
... Show MoreReinforced concrete (RC) beams containing a longitudinal cavity have become an innovative development and advantage for economic purposes of light-weight members without largely affecting their resistance against the applied loads. This type of openings can also be used for maintenance purposes and usage space of communication lines, pipelines, etc. RC beams are primarily loaded in the plane of the members, which are two-dimensional in a plane stress state and the dominant structural behaviours include bending, shear, or combination of both. In the present study, six numerical models of RC beams with and without openings were simulated by using commercial finite element software ANSYS to evaluate the structural behaviours of those b
... Show More