A simple, rapid, accurate and sensitive spectrophotometric method for the determination of thiaminehydrochloride has been developed. The method is based on the formation of the Schiff’s base between the primary amino group present in thiamine hydrochloride and aldehyde group present in the vanillin reagent to produce a yellow colored complex having maximum absorption at 390 nm. Beer’s law has obeaid over the concentration range of 2-28µg/mL, with molar absorptivity of 0.96x104L/mol.cm. The average recovery which is a measure of accuracy is 100±1.3% and the relative standard deviation (RSD) is less than1.5 .The present method is considered to be simple because it does not need heating, hydrolysis and solvent extraction steps. The ingredients often formulated with thiamine and have been shown not to interfere, and is suitable for the routine determination of thiamine hydrochloride. The proposed method has been successfully applied for the determination of thiamine hydrochloride in pure form and in pharmaceutical preparations.
A new, simple and sensitive spectrophotometric method was described for the determination of famotidine (FAM) as a pure material and in pharmaceutical formulation. This method was based on diazotization and coupling reaction between famotidine and diazotized solution of metochlopramide hydrochloride (DMPH) in the presence of phosphate buffer solution to give a compound of azo dye having orange color soluble in water with high absorptivity at a wave length of 478 nm. The data shows that FAM and DMPH combine in the molar ratio of 1:1 at PH 7.0 .The method obeys Beer's law over concentration range of 1-40 ?g.ml-1 of famotidine with a correlation coefficient of 0.9955 and a detection limit of 0.10 ?g.ml-1. The apparent molar absorptivity re
... Show MoreEnvironmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world’s rivers, representing the environmental influence of 471.4 million people across
... Show MoreA simple, rapid and sensitive spectrophotometric method has been developed for the determination of captopril in aqueous solution. The method is based on reaction of captopril with 2,3-dichloro 1,4- naphthoquinon(Dichlone) in neutral medium to form a stable yellow colored product which shows maximum absorption at 347 nm with molar absorptivity of 5.6 ×103 L.mole-1. cm-1. The proposed method is applied successfully for determination of captopril in commercial pharmaceutical tablets.
A sensitive spectrofluorimetric method for the determination of glibenclamide in its tablet formulations has been proposed. The method is based on the dissolving of glibenclamide in absolute ethanol and measuring the native fluorescence at 354 nm after excitation at 302 nm. Beers law is obeyed in the concentration of 1.4 to 10 µg.ml-1 of glibenclamide with a limit of detection (LD) of 0.067 µg.ml-1 and a standard deviation of 0.614. The range percent recoveries (N=3) is 94 - 103.
Simple and sensitive spectrophotometric method is described based on the coupling reaction of tetracycline hydrochloride(TC. HCl) with diazotized 4-aminopyridine in bulk and pharmaceutical forms. Colored azo dye formed during this reaction is measured at 433 nm as a function of time. Factors affecting the reaction yield were studied and the conditions were optimized. The kinetic study involves initial rate and fixed time (10 minutes) procedures for constructing the calibration graphs to determine the concentration of (TC. HCl). The graphs were linear for both methods in concentration range of 10.0 to 100.0 µg.mL-1. The recommended procedure was applied successfully in the determination of (TC. HCl) in itscommercial formulations.
... Show MoreSimple and sensitive spectrophotometric method is described based on the coupling reaction of tetracycline hydrochloride (TC. HCl) with diazotized 4-aminopyridine in bulk and pharmaceutical forms. Colored azo dye formed during this reaction is measured at 433 nm as a function of time. Factors affecting the reaction yield were studied and the conditions were optimized. The kinetic study involves initial rate and fixed time (10 minutes) procedures for constructing the calibration graphs to determine the concentration of (TC. HCl). The graphs were linear for both methods in concentration range of 10.0 to 100.0 μg.mL-1. The recommended procedure was applied successfully in the determination of (TC. HCl) in its commercial formulations.
