In general, the importance of cluster analysis is that one can evaluate elements by clustering multiple homogeneous data; the main objective of this analysis is to collect the elements of a single, homogeneous group into different divisions, depending on many variables. This method of analysis is used to reduce data, generate hypotheses and test them, as well as predict and match models. The research aims to evaluate the fuzzy cluster analysis, which is a special case of cluster analysis, as well as to compare the two methods—classical and fuzzy cluster analysis. The research topic has been allocated to the government and private hospitals. The sampling for this research was comprised of 288 patients being treated in 10 hospitals. As the similarity between hospitals of the study sample was measured according to the standards of quality of health services under fuzzy conditions (a case of uncertainty of the opinions of patients who were in the evaluation of health services provided to them, which was represented by a set of criteria and was measured in the form of a Likert five-point scale). Moreover, those criteria were organized into a questionnaire containing 31 items. The research found a number of conclusions, the most important is that both methods of hierarchical cluster analysis and fuzzy cluster analysis, classify the hospitals of the research sample into two clusters, each cluster comprises a group of hospitals that depend on applying health quality service standards. The second important conclusion is that the fuzzy cluster analysis is more suitable for the classification of the research sample compared to hierarchical cluster analysis.
This paper proposed a new method to study functional non-parametric regression data analysis with conditional expectation in the case that the covariates are functional and the Principal Component Analysis was utilized to de-correlate the multivariate response variables. It utilized the formula of the Nadaraya Watson estimator (K-Nearest Neighbour (KNN)) for prediction with different types of the semi-metrics, (which are based on Second Derivative and Functional Principal Component Analysis (FPCA)) for measureing the closeness between curves. Root Mean Square Errors is used for the implementation of this model which is then compared to the independent response method. R program is used for analysing data. Then, when the cov
... Show MoreA geological model was built for the Sadi reservoir, located at the Halfaya oil field. It is regarded as one of the most significant oilfields in Iraq. The study includes several steps, the most essential of which was importing well logs from six oil wells to the Interactive Petrophysics software for conducting interpretation and analysis to calculate the petrophysical properties such as permeability, porosity, shale volume, water saturation, and NTG and then importing maps and the well tops to the Petrel software to build the 3D-Geological model and to calculate the value of the original oil in place. Three geological surfaces were produced for all Sadi units based on well-top data and the top Sadi structural map. The reservoir has
... Show MoreAbstract\
The developed financial infrastructure is one of the most important elements for achieving stable financial system in a country. The importance of developed financial infrastructure comes from its role in create economic and financial context attractive for foreign investments. Thus, this paper aims first to measure an index of financial infrastructure, and secondly, to gauge the nexus between the developed financial infrastructure and foreign investments inflow in Malaysia and Indonesia. We estimate the index of financial infrastructure by using different indicators such as (the institutional environment, access to finance, legal environment, and others).
By using the G
... Show MoreThe objective of the research , is to shed light on the most important treatment of the problem of missing values of time series data and its influence in simple linear regression. This research deals with the effect of the missing values in independent variable only. This was carried out by proposing missing value from time series data which is complete originally and testing the influence of the missing value on simple regression analysis of data of an experiment related with the effect of the quantity of consumed ration on broilers weight for 15 weeks. The results showed that the missing value had not a significant effect as the estimated model after missing value was consistent and significant statistically. The results also
... Show MoreThis study explores the barriers to adopting green environmental criteria in Supplier Selection (SS) within the Iraqi food industry. It aims to enhance the understanding of sustainable supply chain management in developing nations, with a particular focus on the Iraqi context. A case study approach was utilized to identify eleven key green environmental criteria and 54 sub-criteria, alongside seven major barriers to their adoption. The Best–Worst Method (BWM) was employed to rank the criteria, and Fuzzy Stepwise Weight Assessment Ratio Analysis (SWARA) was used to prioritize the barriers. The analysis revealed that Environmental Management Systems are the most critical criterion for SS. On the other hand, legislation and policies emerged
... Show MoreThis Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters. Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. Many solved examples are intended in this book, in addition to a variety of unsolved relied pro
... Show MoreThis Book is intended to be textbook studied for undergraduate course in multivariate analysis. This book is designed to be used in semester system. In order to achieve the goals of the book, it is divided into the following chapters. Chapter One introduces matrix algebra. Chapter Two devotes to Linear Equation System Solution with quadratic forms, Characteristic roots & vectors. Chapter Three discusses Partitioned Matrices and how to get Inverse, Jacobi and Hessian matrices. Chapter Four deals with Multivariate Normal Distribution (MVN). Chapter Five concern with Joint, Marginal and Conditional Normal Distribution, independency and correlations. Many solved examples are intended in this book, in addition to a variety of unsolved relied pro
... Show MoreImportant points were concluded from this analysis related with the presence of the same variable CEs within multiple isolates with different time points being under the selection and the location of SNPs within the conserved functional pattern of CEs. In the 40 isolates, 9 out of 39 variable CEs conducted with multiple isolates
Dust storms are a common ecological occurrence in many world‘s countries, mainly in dry and semi-dry parts. Dust storms tremendously influence human health, the environment, the climate, and numerous social aspects. In this paper, spatial and temporal analysis, metrological triggers, and trajectory, dust exporting areas of a severe dust storm that occurred in Iraq on May 16, 2022, were investigated. The dust storm's backward trajectory was determined using HYSPLIT model, which is then compared with MODIS and Meteosat satellite images. The weather is then analyzed using the NCEP/NCAR Reanalysis model, and the approximate area of these sources was determined using Landsat 8 satellite image classification method. The results revealed
... Show More