Bimetallic Au –Pt catalysts supporting TiO2 were synthesised using two methods; sol immobilization and impregnation methods. The prepared catalyst underwent a thermal treatment process at 400◦ C, while the reduction reaction under the same condition was done and the obtained catalysts were identified with transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). It has been found that the prepared catalysts have a dimension around 2.5 nm and the particles have uniform orders leading to high dispersion of platinum molecules .The prepared catalysts have been examined as efficient photocatalysts to degrade the Crystal violet dye under UV-light. The optimum values of Bimetallic Au –Pt catalysts supporting TiO2 have been found (0.05g of the catalyst prepared in sol immobilization method, 0.07 g of the synthesised in impregnation procedure. The impact of pH on the degradation reaction was tested; it has been found that pH 10 is the best media for the reaction. The effect of temperature has been discussed when various temperatures were used, and the heat of photoreaction Ea was estimated from the Arrhenius relationship, it has been concluded that the reaction is independent of temperature as the activation energy was very small (Ea= 22 kJ/ mole). The thermodynamic functions; entropy, enthalpy and the free energy have been figured out. It has been found that the positive values of enthalpy ∆H# refer to endothermic reaction, moreover, it has been demonstrated that the photoreaction is an endergonic one according to the calculated values of the free energy of activation. It has been noticed that when temperature increases, it promotes the production of free radicals, but it has been noticed that exceeding the temperature more than the used range causes reducing the percentage of degradation of crystal violet, the reason is due to the limitation conditions of adsorption process at higher temperature on the surface of the catalyst.
A series of new 2-quinolone derivatives linked to benzene sulphonyl moieties were performed by many steps: the first step involved preparation of different coumarins (A1,A2) by condensation of different substituted phenols with ethyl acetoacetate. The compound A1 was treated with nitric acid to afford two isomers of nitrocoumarin derivatives (A3) and (A4). The prepared compounds (A2, A3) were treated with hydrazine hydrate to synthesize different 2-quinolone compounds (A5,A6) while the coumarin treated with different amines gave compounds (A7,A8). Then the synthesized 2-quinolone compounds (A5-A8) treated with benzene sulphonyl chloride to afford new sulfonamide derivatives (A9-A12). The synthesized compounds were characterized by FT-IR, 1H
... Show MorePhthalimide formation of Phthalic anhydride with various amines using microwave or without a method with the difference of the catalyst used in a prepared Phthalimide, either structure general are C6H4CONRCO and used as starting materials in synthesis several compounds derivative phthalimides are an important compounds because spectrum wide biological activities including Antimicrobial activity, anticonvulsant activity, Anti-inflammatory activity,Analgesic activity, Anti- influenza activity and Thromboxane inhibitory activity
In the present study waste aluminium cans were recycled and converted to produce alumina catalyst. These cans contain more than 98% aluminum oxide in their structure and were successfully synthesized to produce nano sized gamma alumina under mild conditions. A comprehensive study was carried out in order to examine the effect of several important parameters on maximum yield of alumina that can be produced. These parameters were reactants mole ratios (1.5, 1.5, 2, 3, 4 and 5), sodium hydroxide concentrations (10, 20, 30, 40, 50 and 55%) and weights of aluminum cans (2, 4, 6, 8 and 10 g). The compositions of alumina solution were determined by Atomic absorption spectroscopy (AAS); and maximum yield of alumina solution was 96.3% obtain
... Show More2(2-Tetrahydropyranylthio) methyl cyclopropyl amines were synthesized from allylmercaptan through several steps. The structures of the intermediates and the final products where confirmed through IR, NMR and elemental analysis, these compounds may be of value in the treatment of diseases where free radicals are implicated in their pathogensis, since the thio and the amino groups of the synthesized compounds may act as free radical scavengers.
A new series polymers was synthesized from reaction starting material Bisacodyl A or [(2-Pyridinylmethylene) di-4, 1-phenylene di acetate] with hydrogen bromide, then the products were polymerized by addition polymerization from used adipoyl and glutaroyl chloride. The structure of these compounds was characterized by FT-IR, melting points, TLC, X-Ray, DSC and 1H-NMR for starting material. These compounds were also screened for their antibacterial activists?
A process of bacterial cellulose gold nanocomposite has been investigated based on experimental work and cited literature. A literature review on the production process is carried out in this study. Bacterial cellulose is a high crystalline fabric material generally used in biomedical applications. A Nanocomposite was made by synthesis from gold and bacterial cellulose. The experimental work includes growing, and isolating bacterial cellulose, preparation of gold Nanoparticles and preparation of Nano composite. Nanoparticle’s formation and adsorption on the cellulose tissue have been observed visually, where a colour change was observed. The predicted particle size for the gold nano
The compound [G1] was prepared from the reaction of thiosemicarbazide with para-hydroxyphenylmethyl ketone in ethanol as a solvent. Then by sequence reactions prepared [G2] and [G3] compounds. The compound [G4] reaction with ethyl acetoacetoneto synthesized compound [G6] and acetyl acetone to synthesized compound [G5]. Reaction the [G3] with two different types of aldehydes in the present of pipredine to form new alkenes compounds [G7]and [G8].The compound [G3] reacted with hydrazine hydrate to formation[G4] with present the hydrazine hydrade 80% in (10) ml of absolute ethanol. Latter the compound [G4]reacted with different aldehydes with present the glacial acetic acid and the solvent was ethanol to formed the Schiff bases compounds[G9] an
... Show MoreIn this work 5-methylene-yl - (2-methy –oxazole-4-one) (1H) imidazole (1) were synthesized from the reaction of L-Histidine with acetic anhydride and which converted to the of 5-methylene-yl-(2-methyl 3-amino imidazole-4-one)-1H-imidazole (2) by reaction with hydrazine hydrate. Schiff bases (3-6) were synthesized from the reaction of compound (2) with different aromatic aldehyde. Reaction of compounds (3-6) with chloroacetyl chloride gives azetidinone one derivatives (7-10). These compounds were characterized by FT-IR and some of them with 1H-NMR and 13C-NMR spectroscopy.
Reaction of,2- [( 4- amio phenyl ) diazenyl] 1,3,4- thiadiazole -5- thiol (S1) with p- chlorobenzeldehyde,3,4 – dimethoxy benzaldehyde and pyrrol-2- carbonxaldehyde gave -5- [{4-(4-chlorobenzylidene amino) phenyl} diezenyl]-1,3,4- thiadiazole-2- thiol (S2),5-[{ 4-[(3,4- dimethoxybenzyldene )amino phenyl ] diazenyl)-1,3,4- thiadiazole-2-thiol,(S3) and -5- [4-(1,H – pyrrol -2- yl- methylene)amino phenyl] diazenyl)-1,3,4- thiadiazole-2- thiol (S4) respectively as schiff's bases compounds. On the same route-2-[(4-amino-1- naphthyl ) diazenyl] -1,3,4- thiadiazole -5- thiol (S5) reacts with –p- chloro benzaldehyde and –m- nitrobenzaldehyde to give the follwing schiff's bases -5-[{ 4-(4- chloro benzylidene ) amino -1- naphthyl} diazenyl]
... Show More