Spray pyrolysis technique (SPT) is employed to synthesize cadmium oxide nanostructure with 3% and 5% Cobalt concentrations. Films are deposited on a glass substrate at 350 ᵒC with 150 nm thickness. The XRD analysis revealed a polycrystalline nature with cubic structure and (111) preferred orientation. Structural parameters represent lattice spacing, crystallite size, lattice parameter and dislocation density. Homogeneous surfaces and regular distribution of atoms were showed by atomic force microscope (AFM) with 1.03 nm average roughness and 1.22 nm root mean square roughness. Optical properties illustrated a high transmittance more than 85% in the range of visible spectrum and decreased with Co concentration increasing. The absorption coefficient values decreased with increasing wavelength and the prepared films had absorption coefficient values greater than 104 cm-1. The optical energy gap values for allowing direct transition (ADT) varied from 2.78 to 2.63 eV with increasing Co concentration, while the energy gap for allowing indirect transition (AIDT) varied from 1.85 to 1.6 eV with Co concentration.
In the present paper, chitosan Schiff base has been synthesized from chitosan’s reaction with the salicyldehyde. The AuNPs was manufacture by extract of onion peels as a reducing agent. The Au NPs that have been prepared were characterized through the UV-vis spectroscopy, XRD analyses and SEM microscopy. The polymer blends of the chitosan Schiff base / PVP has been prepared through using the approach of solution casting. Chitosan Schiff base / PVP Au nano-composites was prepared. Nano composites and polymer blends have been characterized by FTIR which confirm the formation of Schiff base by revealing a new band of absorption at 1651cm-1 as a result of the (C=N) imine group. SEM, DSC and TGA confirms the thermal stability of the pr
... Show MoreBackground In recent years, there has been a notable increase in the level of attention devoted to exploring capabilities of nanoparticles, specifically gold nanoparticles AuNPs, within context of modern times. AuNPs possess distinct biophysical properties, as a novel avenue as an antibacterial agent targeting Streptococcus Mutans and Candida Albicans. The aim of this study to create a nano-platform that has the potential to be environmentally sustainable, in addition to exhibiting exceptional antimicrobial properties against Streptococcus Mutans as well as Candida Albicans. Methods this study involved utilization of
In this study, manganese dioxide (MnO₂) nanoparticles (NPs) were synthesized via the hydrothermal method and utilized for the adsorption of Janus green dye (JG) from aqueous solutions. The effects of MnO₂ NPs on kinetics and diffusion were also analyzed. The synthesized NPs were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), and Fourier-transform infrared spectroscopy (FT-IR), with XRD confirming the nanoparticle size of 6.23 nm. The adsorption kinetics were investigated using three models: pseudo-first-order (PFO), pseudo-second-order (PSO), and the intraparticle diffusion model. The PSO model provided the best fit (R² = 0.999), indicating that the adsorpti
... Show MoreA simple, environmental friendly and selective sample preparation technique employing porous membrane protected micro-solid phase extraction (μ-SPE) loaded with molecularly imprinted polymer (MIP) for the determination of ochratoxin A (OTA) is described. After the extraction, the analyte was desorbed using ultrasonication and was analyzed using high performance liquid chromatography. Under the optimized conditions, the detection limits of OTA for coffee, grape juice and urine were 0.06 ng g−1, 0.02 and 0.02 ng mL−1, respectively while the quantification limits were 0.19 ng g−1, 0.06 and 0.08 ng mL−1, respectively. The recoveries of OTA from coffee spiked at 1, 25 and 50 ng g−1, grape juice and urine samples at 1, 25 and 50 ng mL
... Show MoreSoftware-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne
... Show More