The study was conducted for the detection of Aflatoxin B1(AFB1) in the serum and urine of 42 early and middle childhood patients (26 male and 16 female ) with renal function disease, liver function disease, in additional to atrophy in the growth and other symptoms depending on the information within consent obtained from each patient, in addition to 8 children, apparently healthy, as the control. The technique of HPLC was used for the detection of AFB1 from all samples. The results showed that out of 42 patient children, 19 (45.2%) gave positive detection of AFB1 in the serum among all age groups patients with a mean of 0.88 ng/ml and a range of (0.12-3.04) ng/ml. This was compared with the control that did not detect any level. On the other hand, AFB1 was not detected in any of urine samples in both of the sexes. Positive results of serum AFB1 were recorded in males more than females sample which reached 12(46.1%) and 7(43.7%) respectively with a mean/ range reached to (1.08 /0.12-2.91 and 0.82/0.12-1.30)ng/ml respectively, compared with 8 control samples that did not detect any value of aflatoxins.
Atmospheric transmission is disturbed by scintillation, where scintillation caused more beam divergence. In this work target image spot radius was calculated in presence of atmospheric scintillation. The calculation depend on few relevant equation based on atmospheric parameter (for Middle East), tracking range, expansion ratio of applied beam expander's, receiving unit lens F-number, and the laser wavelength besides photodetector parameter. At maximum target range Rmax =20 km, target image radius is at its maximum Rs=0.4 mm. As the range decreases spot radius decreases too, until the range reaches limit (4 km) at which target image spot radius at its minimum value (0.22 mm). Then as the range decreases, spot radius increases due to geom
... Show MoreRecent research has shown that a Deoxyribonucleic Acid (DNA) has ability to be used to discover diseases in human body as its function can be used for an intrusion-detection system (IDS) to detect attacks against computer system and networks traffics. Three main factor influenced the accuracy of IDS based on DNA sequence, which is DNA encoding method, STR keys and classification method to classify the correctness of proposed method. The pioneer idea on attempt a DNA sequence for intrusion detection system is using a normal signature sequence with alignment threshold value, later used DNA encoding based cryptography, however the detection rate result is very low. Since the network traffic consists of 41 attributes, therefore we proposed the
... Show MoreSurveillance cameras are video cameras used for the purpose of observing an area. They are often connected to a recording device or IP network, and may be watched by a security guard or law enforcement officer. In case of location have less percentage of movement (like home courtyard during night); then we need to check whole recorded video to show where and when that motion occur which are wasting in time. So this paper aims at processing the real time video captured by a Webcam to detect motion in the Scene using MATLAB 2012a, with keeping in mind that camera still recorded which means real time detection. The results show accuracy and efficiency in detecting motion
The detection for Single Escherichia Coli Bacteria has attracted great interest and in biology and physics applications. A nanostructured porous silicon (PS) is designed for rapid capture and detection of Escherichia coli bacteria inside the micropore. PS has attracted more attention due to its unique properties. Several works are concerning the properties of nanostructured porous silicon. In this study PS is fabricated by an electrochemical anodization process. The surface morphology of PS films has been studied by scanning electron microscope (SEM) and atomic force microscope (AFM). The structure of porous silicon was studied by energy-dispersive X-ray spectroscopy (EDX). Details of experimental methods and results are given and discussed
... Show MoreBotnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet
... Show More