Preferred Language
Articles
/
bsj-4189
Detection of Aflatoxin B1 among Early and Middle Childhood Iraqi Patients
...Show More Authors

      The study was conducted for the detection of Aflatoxin B1(AFB1) in the serum and urine of 42 early and middle childhood patients (26 male and  16 female ) with renal function disease, liver function disease, in additional to atrophy in the growth and other symptoms depending on the information within consent obtained from each patient, in addition to 8 children, apparently healthy, as  the control. The technique of HPLC was used for the detection of AFB1 from all samples. The results showed that out of 42 patient children, 19 (45.2%) gave positive detection of AFB1 in the serum among all age groups patients with a mean of 0.88 ng/ml and a range of (0.12-3.04) ng/ml. This was compared with the control that did not detect any level. On the other hand, AFB1 was not detected in any of urine samples in both of the sexes. Positive results of serum AFB1 were recorded in males more than females sample which reached 12(46.1%) and 7(43.7%) respectively with a mean/ range reached to (1.08 /0.12-2.91 and 0.82/0.12-1.30)ng/ml respectively, compared with 8 control samples that did not detect any value of aflatoxins.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
Moving Objects Detection Based on Frequency Domain: image processing
...Show More Authors

In this research a proposed technique is used to enhance the frame difference technique performance for extracting moving objects in video file. One of the most effective factors in performance dropping is noise existence, which may cause incorrect moving objects identification. Therefore it was necessary to find a way to diminish this noise effect. Traditional Average and Median spatial filters can be used to handle such situations. But here in this work the focus is on utilizing spectral domain through using Fourier and Wavelet transformations in order to decrease this noise effect. Experiments and statistical features (Entropy, Standard deviation) proved that these transformations can stand to overcome such problems in an elegant way.

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Sat Jul 31 2021
Journal Name
Iraqi Journal Of Science
A Decision Tree-Aware Genetic Algorithm for Botnet Detection
...Show More Authors

     In this paper, the botnet detection problem is defined as a feature selection problem and the genetic algorithm (GA) is used to search for the best significant combination of features from the entire search space of set of features. Furthermore, the Decision Tree (DT) classifier is used as an objective function to direct the ability of the proposed GA to locate the combination of features that can correctly classify the activities into normal traffics and botnet attacks. Two datasets  namely the UNSW-NB15 and the Canadian Institute for Cybersecurity Intrusion Detection System 2017 (CICIDS2017), are used as evaluation datasets. The results reveal that the proposed DT-aware GA can effectively find the relevant features from

... Show More
Scopus (6)
Crossref (2)
Scopus Crossref
Publication Date
Sun Sep 01 2013
Journal Name
International Journal Of Advanced Research In Computer Science And Software Engineering
Real Time Motion Detection in Surveillance Camera Using MATLAB
...Show More Authors

Surveillance cameras are video cameras used for the purpose of observing an area. They are often connected to a recording device or IP network, and may be watched by a security guard or law enforcement officer. In case of location have less percentage of movement (like home courtyard during night); then we need to check whole recorded video to show where and when that motion occur which are wasting in time. So this paper aims at processing the real time video captured by a Webcam to detect motion in the Scene using MATLAB 2012a, with keeping in mind that camera still recorded which means real time detection. The results show accuracy and efficiency in detecting motion

Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Digest Journal Of Nanomaterials And Biostructures
Nanostructured silicon trapping for single Escherichia coli bacteria detection
...Show More Authors

The detection for Single Escherichia Coli Bacteria has attracted great interest and in biology and physics applications. A nanostructured porous silicon (PS) is designed for rapid capture and detection of Escherichia coli bacteria inside the micropore. PS has attracted more attention due to its unique properties. Several works are concerning the properties of nanostructured porous silicon. In this study PS is fabricated by an electrochemical anodization process. The surface morphology of PS films has been studied by scanning electron microscope (SEM) and atomic force microscope (AFM). The structure of porous silicon was studied by energy-dispersive X-ray spectroscopy (EDX). Details of experimental methods and results are given and discussed

... Show More
Scopus
Publication Date
Tue Apr 16 2019
Journal Name
Proceedings Of The 2019 5th International Conference On Computer And Technology Applications
Four Char DNA Encoding for Anomaly Intrusion Detection System
...Show More Authors

Recent research has shown that a Deoxyribonucleic Acid (DNA) has ability to be used to discover diseases in human body as its function can be used for an intrusion-detection system (IDS) to detect attacks against computer system and networks traffics. Three main factor influenced the accuracy of IDS based on DNA sequence, which is DNA encoding method, STR keys and classification method to classify the correctness of proposed method. The pioneer idea on attempt a DNA sequence for intrusion detection system is using a normal signature sequence with alignment threshold value, later used DNA encoding based cryptography, however the detection rate result is very low. Since the network traffic consists of 41 attributes, therefore we proposed the

... Show More
View Publication
Scopus (7)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Iraqi Journal Of Science
PLAGIARISM DETECTION SYSTEM IN SCIENTIFIC PUBLICATION USING LSTM NETWORKS
...Show More Authors

Scopus (3)
Scopus
Publication Date
Sat Jan 02 2010
Journal Name
Journal Of Al-nahrain University
HIDDEN FEATURES DETECTION USING HISTOGRAM MODIFICATION IN MRI IMAGES
...Show More Authors

Magnetic Resonance Imaging (MRI) uses magnetization and radio waves, rather than x-rays to make very detailed, cross- sectional pictures of the brain. In this work we are going to explain some procedures belongs contrast and brightness improvement which is very important in the improvement the image quality such as the manipulation with the image histogram. Its has been explained in this worked the histogram shrink i.e. reducing the size of the gray level gives a dim low contrast picture is produced, where, the histogram stretching of the gray level was distributed on a wide scale but there is no increase in the number of pixels in the bright region. The histogram equalization has also been discuss together with its effects of the improveme

... Show More
Publication Date
Tue Apr 02 2024
Journal Name
Advances In Systems Science And Applications
A New Face Swap Detection Technique for Digital Images
...Show More Authors

View Publication
Scopus
Publication Date
Mon Jan 01 2024
Journal Name
Computers, Materials & Continua
Credit Card Fraud Detection Using Improved Deep Learning Models
...Show More Authors

View Publication
Scopus (12)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Cybersecurity And Information Management
Machine Learning-based Information Security Model for Botnet Detection
...Show More Authors

Botnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet

... Show More
View Publication
Scopus (11)
Crossref (7)
Scopus Crossref