Optical burst switching (OBS) network is a new generation optical communication technology. In an OBS network, an edge node first sends a control packet, called burst header packet (BHP) which reserves the necessary resources for the upcoming data burst (DB). Once the reservation is complete, the DB starts travelling to its destination through the reserved path. A notable attack on OBS network is BHP flooding attack where an edge node sends BHPs to reserve resources, but never actually sends the associated DB. As a result the reserved resources are wasted and when this happen in sufficiently large scale, a denial of service (DoS) may take place. In this study, we propose a semi-supervised machine learning approach using k-means algorithm, to detect malicious nodes in an OBS network. The proposed semi-supervised model was trained and validated with small amount data from a selected dataset. Experiments show that the model can classify the nodes into either behaving or not-behaving classes with 90% accuracy when trained with just 20% of data. When the nodes are classified into behaving, not-behaving and potentially not-behaving classes, the model shows 65.15% and 71.84% accuracy if trained with 20% and 30% of data respectively. Comparison with some notable works revealed that the proposed model outperforms them in many respects.
Reproduction potential and age –specific fecundity of the Mealybug Planococcus citri Risso were studied in the laboratories of Biological control research unit,college of Agriculture –Baghdad university at 25± 2Cº and 60-70% R.H.with 16 light:8 dark photo period.The results showed that the survival ratio began to decline at the 38th day, the average female age was 20 days ,while the average age was 8 days at the first reproduction . Net reproduction rate ( Ro ) was 58.59 female female generation which prove that the population of the mealybug was of the unstable kind , intrinsic rate of increase (rm) was 0.118 femalefemale and the average length period of generation ( T ) was 34.30 days . Many local predators attack the mealybug
... Show MoreFace Recognition Systems (FRS) are increasingly targeted by morphing attacks, where facial features of multiple individuals are blended into a synthetic image to deceive biometric verification. This paper proposes an enhanced Siamese Neural Network (SNN)-based system for robust morph detection. The methodology involves four stages. First, a dataset of real and morphed images is generated using StyleGAN, producing high-quality facial images. Second, facial regions are extracted using Faster Region-based Convolutional Neural Networks (R-CNN) to isolate relevant features and eliminate background noise. Third, a Local Binary Pattern-Convolutional Neural Network (LBP-CNN) is used to build a baseline FRS and assess its susceptibility to d
... Show MoreThis study aims to model the flank wear prediction equation in metal cutting, depending on the workpiece material properties and almost cutting conditions. A new method of energy transferred solution between the cutting tool and workpiece was introduced through the flow stress of chip formation by using the Johnson-Cook model. To investigate this model, an orthogonal cutting test coupled with finite element analysis was carried out to solve this model and finding a wear coefficient of cutting 6061-T6 aluminum and the given carbide tool.
The turning process has various factors, which affecting machinability and should be investigated. These are surface roughness, tool life, power consumption, cutting temperature, machining force components, tool wear, and chip thickness ratio. These factors made the process nonlinear and complicated. This work aims to build neural network models to correlate the cutting parameters, namely cutting speed, depth of cut and feed rate, to the machining force and chip thickness ratio. The turning process was performed on high strength aluminum alloy 7075-T6. Three radial basis neural networks are constructed for cutting force, passive force, and feed force. In addition, a radial basis network is constructed to model the chip thickness ratio. T
... Show MoreA genetic algorithm model coupled with artificial neural network model was developed to find the optimal values of upstream, downstream cutoff lengths, length of floor and length of downstream protection required for a hydraulic structure. These were obtained for a given maximum difference head, depth of impervious layer and degree of anisotropy. The objective function to be minimized was the cost function with relative cost coefficients for the different dimensions obtained. Constraints used were those that satisfy a factor of safety of 2 against uplift pressure failure and 3 against piping failure.
Different cases reaching 1200 were modeled and analyzed using geo-studio modeling, with different values of input variables. The soil wa
Abstract
Objective(s): To evaluate blended learning in nursing education at the Middle Region in Iraq.
Methodology: A descriptive study, using evaluation approach, is conducted to evaluate blended learning in nursing education in Middle Region in Iraq from September 26th, 2021 to March 22nd, 2022. The study is carried out at two Colleges of Nursing at the University of Baghdad and University of Tikrit in Iraq. A convenient, non-probability, sample of (60) undergraduate nursing students is selected. The sample is comprised of (30) student from each college of nursing, Self-report questionnaire is constructed from the literature, for e
... Show MoreResearch on the role of organizational change in easing the organizational conflict focuses for being one of the important topics and relatively modern and which have a significant impact on the future of organizations, so this study was to identify the relationship and the impact of organizational change and of deportation (technological, organizational structure, human resources, the change in the task) at the organizational conflict in the Earth company link Iraq, in order to reach the goals of the research, it has been the development of a questionnaire distributed to a random sample of (100) composed employees from managers and heads of departments and the people and staff at the Earth company link Iraq, the study found: the
... Show MoreSelf-compacted concrete (SCC) is a highly flowable concrete, with no segregation which can be spread into place by filling the structures framework and permeate the reinforcement without any compaction or mechanical consolidation ACI 237R-14. One of the most important problems faced by concrete industry in Iraq and Gulf Arab land is deterioration due to internal sulfate attack (ISA) that causes damage of concrete and consequently reduces its compressive strength, increases expansion and may lead to its cracking and destruction. The experimental program was focused to study two ordinary Portland cements with different chemical composition with (5, 10 and 15) % percentage of high reactivity metakaoline (HRM)
... Show More