Optical burst switching (OBS) network is a new generation optical communication technology. In an OBS network, an edge node first sends a control packet, called burst header packet (BHP) which reserves the necessary resources for the upcoming data burst (DB). Once the reservation is complete, the DB starts travelling to its destination through the reserved path. A notable attack on OBS network is BHP flooding attack where an edge node sends BHPs to reserve resources, but never actually sends the associated DB. As a result the reserved resources are wasted and when this happen in sufficiently large scale, a denial of service (DoS) may take place. In this study, we propose a semi-supervised machine learning approach using k-means algorithm, to detect malicious nodes in an OBS network. The proposed semi-supervised model was trained and validated with small amount data from a selected dataset. Experiments show that the model can classify the nodes into either behaving or not-behaving classes with 90% accuracy when trained with just 20% of data. When the nodes are classified into behaving, not-behaving and potentially not-behaving classes, the model shows 65.15% and 71.84% accuracy if trained with 20% and 30% of data respectively. Comparison with some notable works revealed that the proposed model outperforms them in many respects.
Due to the difficulties that Iraqi students face when writing in the English language, this preliminary study aimed to improve students' writing skills by using online platforms remotely. Sixty first-year students from Al-Furat Al–Awsat Technical University participated in this study. Through these platforms, the researchers relied on stimuli, such as images, icons, and short titles to allow for deeper and more accurate participations. Data were collected through corrections, observations, and feedback from the researchers and peers. In addition, two pre and post-tests were conducted. The quantitative data were analysed by SPSS statistical Editor, whereas the qualitative data were analyzed using the Piot table, an Excel sheet. The resu
... Show MoreMost of the medical datasets suffer from missing data, due to the expense of some tests or human faults while recording these tests. This issue affects the performance of the machine learning models because the values of some features will be missing. Therefore, there is a need for a specific type of methods for imputing these missing data. In this research, the salp swarm algorithm (SSA) is used for generating and imputing the missing values in the pain in my ass (also known Pima) Indian diabetes disease (PIDD) dataset, the proposed algorithm is called (ISSA). The obtained results showed that the classification performance of three different classifiers which are support vector machine (SVM), K-nearest neighbour (KNN), and Naïve B
... Show Moreplanning is among the most significant in the field of robotics research. As it is linked to finding a safe and efficient route in a cluttered environment for wheeled mobile robots and is considered a significant prerequisite for any such mobile robot project to be a success. This paper proposes the optimal path planning of the wheeled mobile robot with collision avoidance by using an algorithm called grey wolf optimization (GWO) as a method for finding the shortest and safe. The research goals in this study for identify the best path while taking into account the effect of the number of obstacles and design parameters on performance for the algorithm to find the best path. The simulations are run in the MATLAB environment to test the
... Show MoreA new modified differential evolution algorithm DE-BEA, is proposed to improve the reliability of the standard DE/current-to-rand/1/bin by implementing a new mutation scheme inspired by the bacterial evolutionary algorithm (BEA). The crossover and the selection schemes of the DE method are also modified to fit the new DE-BEA mechanism. The new scheme diversifies the population by applying to all the individuals a segment based scheme that generates multiple copies (clones) from each individual one-by-one and applies the BEA segment-wise mechanism. These new steps are embedded in the DE/current-to-rand/bin scheme. The performance of the new algorithm has been compared with several DE variants over eighteen benchmark functions including sever
... Show MoreThe rapid success and the field dilation of Daish organization in both Iraq and Syria make academic institutes and research centers to pay attention to its propaganda means to gain its public opinion, and to further investigation about new methods employed by this organization to disseminate its messages to the public, particularly young people in large areas of the world. This organization uses traditional propaganda techniques on psychological war and its levels, social network sites and platforms that are distributed online. This study seeks to expose more persuasive methods used by the organization to gain multiple classes of society and to disseminate its extremist ideological thoughts. It also studies the psychological operation an
... Show MoreSingle Point Incremental Forming (SPIF) is a forming technique of sheet material based on layered manufacturing principles. The sheet part is locally deformed through horizontal slices. The moving locus of forming tool (called as toolpath) in these slices constructed to the finished part was performed by the CNC technology. The toolpath was created directly from CAD model of final product. The forming tool is a Ball-end forming tool, which was moved along the toolpath while the edges of sheet material were clamped rigidly on fixture.
This paper presented an investigation study of thinning distribution of a conical shapes carried out by incremental forming and the validation of finite element method to evaluate the limits of the p
... Show MoreAn accurate assessment of the pipes’ conditions is required for effective management of the trunk sewers. In this paper the semi-Markov model was developed and tested using the sewer dataset from the Zublin trunk sewer in Baghdad, Iraq, in order to evaluate the future performance of the sewer. For the development of this model the cumulative waiting time distribution of sewers was used in each condition that was derived directly from the sewer condition class and age data. Results showed that the semi-Markov model was inconsistent with the data by adopting ( 2 test) and also, showed that the error in prediction is due to lack of data on the sewer waiting times at each condition state which can be solved by using successive conditi
... Show MoreObjective: To determine the effectiveness of the educational program on nursing staffs' knowledge about uses of steroids and their side effects.
Methodology: A pre-experimental study design (one group design: pre-test and post-test) was used. This study was conducted in Al-Diwaniya Teaching Hospital for the period from ( 28th May to 10 th June, 2020) on a non-probability (purposive) sample consisting of (30 nurses) working in Oncology unit. A questionnaire was built as a data collection tool and consisted of two parts:
First part: The demographic characteristics of the nursing staff (gender, age, level of education, years of experience in hospital, participation in training courses related to nursing care for a patients undergoing