This paper aims to propose a hybrid approach of two powerful methods, namely the differential transform and finite difference methods, to obtain the solution of the coupled Whitham-Broer-Kaup-Like equations which arises in shallow-water wave theory. The capability of the method to such problems is verified by taking different parameters and initial conditions. The numerical simulations are depicted in 2D and 3D graphs. It is shown that the used approach returns accurate solutions for this type of problems in comparison with the analytic ones.
In this paper the oscillation criterion was investigated for all solutions of the third-order half linear neutral differential equations. Some necessary and sufficient conditions are established for every solution of (a(t)[(x(t)±p(t)x(?(t) ) )^'' ]^? )^'+q(t) x^? (?(t) )=0, t?t_0, to be oscillatory. Examples are given to illustrate our main results.
The research aims to shed light on the amount of proceeds annual tax for each of the way the contract total and percentage of completion method - see which is better - as well as the current problems arising from the application method of the contract in full in settling accounts tax - to identify problems - related to postpone settling accounts tax in accordance with the way the contract fully and determine the advantages and disadvantages of each of the methods through practical application , and then use the results as inputs to help in the decision to confirm the continuation of the GCT using a full decade in settling accounts tax for long-term construction contracts or forgo them.
Were the result of research the existence of
... Show MoreIn this paper, the proposed phase fitted and amplification fitted of the Runge-Kutta-Fehlberg method were derived on the basis of existing method of 4(5) order to solve ordinary differential equations with oscillatory solutions. The recent method has null phase-lag and zero dissipation properties. The phase-lag or dispersion error is the angle between the real solution and the approximate solution. While the dissipation is the distance of the numerical solution from the basic periodic solution. Many of problems are tested over a long interval, and the numerical results have shown that the present method is more precise than the 4(5) Runge-Kutta-Fehlberg method.
The main work of this paper is devoted to a new technique of constructing approximated solutions for linear delay differential equations using the basis functions power series functions with the aid of Weighted residual methods (collocations method, Galerkin’s method and least square method).
The main aim of this paper is to study how the different estimators of the two unknown parameters (shape and scale parameter) of a generalized exponential distribution behave for different sample sizes and for different parameter values. In particular,
. Maximum Likelihood, Percentile and Ordinary Least Square estimators had been implemented for different sample sizes (small, medium, and large) and assumed several contrasts initial values for the two parameters. Two indicators of performance Mean Square Error and Mean Percentile Error were used and the comparisons were carried out between different methods of estimation by using monte carlo simulation technique .. It was obse
... Show MoreIn this research, titanium dioxide nanoparticles (TiO2 NPs) were prepared through the sol-gel process at an acidic medium (pH3).TiO2 nanoparticles were prepared from titanium trichloride (TiCl3) as a precursor with Ammonium hydroxide (NH4OH) with 1:3 ratio at 50 °C. The resulting gel was dried at 70 °C to obtain the Nanocrystalline powder. The powder from the drying process was treated thermally at temperatures 500 °C and 700 °C. The crystalline structure, surface morphology, and particle size were studied by using X-ray diffraction (XRD), Atomic Force Microscopy (AFM), and Scanning Electron Microscope (SEM). The results showed (anatase) phase of titanium dioxide with the average grain size
... Show MoreOscillation criteria are obtained for all solutions of the first-order linear delay differential equations with positive and negative coefficients where we established some sufficient conditions so that every solution of (1.1) oscillate. This paper generalized the results in [11]. Some examples are considered to illustrate our main results.