Preferred Language
Articles
/
bsj-4000
Anomaly Detection Approach Based on Deep Neural Network and Dropout
...Show More Authors

   Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss function to enforce the proposed model in multiple classification, including five labels, one is normal and four others are attacks (Dos, R2L, U2L and Probe). Accuracy metric was used to evaluate the model performance. The proposed model accuracy achieved to 99.45%. Commonly the recognition time is reduced in the NIDS by using feature selection technique. The proposed DNN classifier implemented with feature selection algorithm, and obtained on accuracy reached to 99.27%.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Mar 01 2017
Journal Name
2017 Annual Conference On New Trends In Information & Communications Technology Applications (ntict)
Automatic Iraqi license plate recognition system using back propagation neural network (BPNN)
...Show More Authors

View Publication
Scopus (11)
Crossref (8)
Scopus Crossref
Publication Date
Thu Mar 06 2025
Journal Name
Aip Conference Proceedings
Solving 5th order nonlinear 4D-PDEs using efficient design of neural network
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Tue Jan 14 2020
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
The role of the Internal Audit Department in detecting corruption through accountability
...Show More Authors

Internal Audit  is one of the most important backers of corporate governance, the researcher expanded his interest in this subject to examine the efficiency of Internal Auditors at the Arab Bank and its branches in Jordan to achieve Accountability which enhances the Corporate Governance and to identify the effect of the International Internal Audit  Standards in strengthening the role of Internal Auditors in Accountability, and the effect of Attribute and Performance Standards in Accountability. The researcher applied descriptive analysis method to define the role of Internal Audit in the Arab Bank in achieving one of the basic principles of Corporate Governance assimilated in Accountability. The researcher’s sources include

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Mar 15 2019
Journal Name
Journal Of The College Of Education For Women
Exploring the Effectiveness of two Scales for Measuring Cultural Intelligence of the Preparatory School Students
...Show More Authors

The present study aims at exploring tow cultural intelligence scales of preparatory school students. It also aims at finding out the statistically significant differences according to gender and specification. Accordingly, the present study seeks to answer the following questions:

  1. Is there cultural intelligence of the preparatory school students?
  2. Is there any statistically significant differences according to gender and specification variables?
  3. Is there a scale more effective than cultural intelligence scales?

The stratified random sampling method is used to for selecting the sample of (216) students of scientific and humanistic specifications from

... Show More
View Publication Preview PDF
Publication Date
Sat May 24 2025
Journal Name
Iraqi Journal For Computer Science And Mathematics
Intrusion Detection System for IoT Based on Modified Random Forest Algorithm
...Show More Authors

An intrusion detection system (IDS) is key to having a comprehensive cybersecurity solution against any attack, and artificial intelligence techniques have been combined with all the features of the IoT to improve security. In response to this, in this research, an IDS technique driven by a modified random forest algorithm has been formulated to improve the system for IoT. To this end, the target is made as one-hot encoding, bootstrapping with less redundancy, adding a hybrid features selection method into the random forest algorithm, and modifying the ranking stage in the random forest algorithm. Furthermore, three datasets have been used in this research, IoTID20, UNSW-NB15, and IoT-23. The results are compared with the three datasets men

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Mon Nov 21 2022
Journal Name
Sensors
Deep Learning-Based Computer-Aided Diagnosis (CAD): Applications for Medical Image Datasets
...Show More Authors

Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes

... Show More
View Publication
Scopus (32)
Crossref (28)
Scopus Clarivate Crossref
Publication Date
Thu Sep 01 2022
Journal Name
Iraqi Journal Of Physics
Development and Assessment of Feed Forward Back Propagation Neural Network Models to Predict Sunshine Duration
...Show More Authors

         The duration of sunshine is one of the important indicators and one of the variables for measuring the amount of solar radiation collected in a particular area. Duration of solar brightness has been used to study atmospheric energy balance, sustainable development, ecosystem evolution and climate change. Predicting the average values of sunshine duration (SD) for Duhok city, Iraq on a daily basis using the approach of artificial neural network (ANN) is the focus of this paper. Many different ANN models with different input variables were used in the prediction processes. The daily average of the month, average temperature, maximum temperature, minimum temperature, relative humidity, wind direction, cloud level and atmosp

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Aug 31 2017
Journal Name
Journal Of Engineering
Optimum Dimensions of Hydraulic Structures and Foundation Using Genetic Algorithm coupled with Artificial Neural Network
...Show More Authors

      A model using the artificial neural networks and genetic algorithm technique is developed for obtaining optimum dimensions of the foundation length and protections of small hydraulic structures. The procedure involves optimizing an objective function comprising a weighted summation of the state variables. The decision variables considered in the optimization are the upstream and downstream cutoffs lengths and their angles of inclination, the foundation length, and the length of the downstream soil protection. These were obtained for a given maximum difference in head, depth of impervious layer and degree of anisotropy. The optimization carried out is subjected to constraints that ensure a safe structure aga

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 01 2020
Journal Name
Journal Of Engineering Science And Technology
Water quality assessment and sodium adsorption ratio prediction of Tigris River using artificial neural network
...Show More Authors

Publication Date
Thu Feb 09 2023
Journal Name
Artificial Intelligence Review
Community detection model for dynamic networks based on hidden Markov model and evolutionary algorithm
...Show More Authors

Finding communities of connected individuals in complex networks is challenging, yet crucial for understanding different real-world societies and their interactions. Recently attention has turned to discover the dynamics of such communities. However, detecting accurate community structures that evolve over time adds additional challenges. Almost all the state-of-the-art algorithms are designed based on seemingly the same principle while treating the problem as a coupled optimization model to simultaneously identify community structures and their evolution over time. Unlike all these studies, the current work aims to individually consider this three measures, i.e. intra-community score, inter-community score, and evolution of community over

... Show More
View Publication
Scopus (11)
Crossref (7)
Scopus Clarivate Crossref