Preferred Language
Articles
/
bsj-4000
Anomaly Detection Approach Based on Deep Neural Network and Dropout
...Show More Authors

   Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss function to enforce the proposed model in multiple classification, including five labels, one is normal and four others are attacks (Dos, R2L, U2L and Probe). Accuracy metric was used to evaluate the model performance. The proposed model accuracy achieved to 99.45%. Commonly the recognition time is reduced in the NIDS by using feature selection technique. The proposed DNN classifier implemented with feature selection algorithm, and obtained on accuracy reached to 99.27%.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Nov 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Treatability influence of municipal sewage effluent on surface water quality assessment based on Nemerow pollution index using an artificial neural network
...Show More Authors
Abstract<p>Assessing water quality provides a scientific foundation for the development and management of water resources. The objective of the research is to evaluate the impact treated effluent from North Rustumiyia wastewater treatment plant (WWTP) on the quality of Diyala river. The model of the artificial neural network (ANN) and factor analysis (FA) based on Nemerow pollution index (NPI). To define important water quality parameters for North Al-Rustumiyia for the line(F2), the Nemerow Pollution Index was introduced. The most important parameters of assessment of water variation quality of wastewater were the parameter used in the model: biochemical oxygen demand (BOD), chemical oxygen dem</p> ... Show More
View Publication
Scopus (9)
Crossref (9)
Scopus Crossref
Publication Date
Tue Aug 27 2024
Journal Name
Tem Journal
Preparing the Electrical Signal Data of the Heart by Performing Segmentation Based on the Neural Network U-Net
...Show More Authors

Research on the automated extraction of essential data from an electrocardiography (ECG) recording has been a significant topic for a long time. The main focus of digital processing processes is to measure fiducial points that determine the beginning and end of the P, QRS, and T waves based on their waveform properties. The presence of unavoidable noise during ECG data collection and inherent physiological differences among individuals make it challenging to accurately identify these reference points, resulting in suboptimal performance. This is done through several primary stages that rely on the idea of preliminary processing of the ECG electrical signal through a set of steps (preparing raw data and converting them into files tha

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
Moving Objects Detection Based on Frequency Domain: image processing
...Show More Authors

In this research a proposed technique is used to enhance the frame difference technique performance for extracting moving objects in video file. One of the most effective factors in performance dropping is noise existence, which may cause incorrect moving objects identification. Therefore it was necessary to find a way to diminish this noise effect. Traditional Average and Median spatial filters can be used to handle such situations. But here in this work the focus is on utilizing spectral domain through using Fourier and Wavelet transformations in order to decrease this noise effect. Experiments and statistical features (Entropy, Standard deviation) proved that these transformations can stand to overcome such problems in an elegant way.

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Journal Of Engineering
Spike neural network as a controller in SDN network
...Show More Authors

The paper proposes a methodology for predicting packet flow at the data plane in smart SDN based on the intelligent controller of spike neural networks(SNN). This methodology is applied to predict the subsequent step of the packet flow, consequently reducing the overcrowding that might happen. The centralized controller acts as a reactive controller for managing the clustering head process in the Software Defined Network data layer in the proposed model. The simulation results show the capability of Spike Neural Network controller in SDN control layer to improve the (QoS) in the whole network in terms of minimizing the packet loss ratio and increased the buffer utilization ratio.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Jan 15 2025
Journal Name
International Journal Of Cloud Computing And Database Management
Deep video understanding based on language generation
...Show More Authors

Vol. 6, Issue 1 (2025)

View Publication Preview PDF
Publication Date
Thu Feb 01 2024
Journal Name
Baghdad Science Journal
Detection of resistance genes (gyrA,qepA,drf1,drf17) for E.coli in Iraqi aquatic environment
...Show More Authors

The control of water represents the safe key for fair and optimal use to protect water resources due to human activities, including untreated wastewater, which is considered a carrier of a large number of antibiotic-resistant bacterial species. This study aimed to investigate the prevalence of antibiotic-resistance to E. coli in Tigris River by the presence of resistance genes for aminoglycoside(qepA( ,quinolone (gyrA), and sulfa drugs( dfr1 ,dfr17) due to the frequent use of antibiotics and their release into wastewater of hospitals. Samples were collected from three sites on Tigris River: S1( station wastewater in Adhamiya), S2 (station wastewater in Baghdad Medical city hospital), S3 (station wastew

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Baghdad Science Journal
Improving the efficiency and security of passport control processes at airports by using the R-CNN object detection model
...Show More Authors

The use of real-time machine learning to optimize passport control procedures at airports can greatly improve both the efficiency and security of the processes. To automate and optimize these procedures, AI algorithms such as character recognition, facial recognition, predictive algorithms and automatic data processing can be implemented. The proposed method is to use the R-CNN object detection model to detect passport objects in real-time images collected by passport control cameras. This paper describes the step-by-step process of the proposed approach, which includes pre-processing, training and testing the R-CNN model, integrating it into the passport control system, and evaluating its accuracy and speed for efficient passenger flow

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Thu Feb 07 2019
Journal Name
Journal Of The College Of Education For Women
SPEECH RECOGNITION OF ARABIC WORDS USING ARTIFICIAL NEURAL NETWORKS
...Show More Authors

The speech recognition system has been widely used by many researchers using different
methods to fulfill a fast and accurate system. Speech signal recognition is a typical
classification problem, which generally includes two main parts: feature extraction and
classification. In this paper, a new approach to achieve speech recognition task is proposed by
using transformation techniques for feature extraction methods; namely, slantlet transform
(SLT), discrete wavelet transforms (DWT) type Daubechies Db1 and Db4. Furthermore, a
modified artificial neural network (ANN) with dynamic time warping (DTW) algorithm is
developed to train a speech recognition system to be used for classification and recognition
purposes. T

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Improving the Network Lifetime in Wireless Sensor Network for Internet of Thing Applications
...Show More Authors

Mobile Wireless sensor networks have acquired a great interest recently due to their capability to provide good solutions and low-priced in multiple fields. Internet of Things (IoT) connects different technologies such as sensing, communication, networking, and cloud computing. It can be used in monitoring, health care and smart cities. The most suitable infrastructure for IoT application is wireless sensor networks. One of the main defiance of WSNs is the power limitation of the sensor node. Clustering model is an actual way to eliminate the inspired power during the transmission of the sensed data to a central point called a Base Station (BS). In this paper, efficient clustering protocols are offered to prolong network lifetime. A kern

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
Arabic Sentiment Analysis (ASA) Using Deep Learning Approach
...Show More Authors

Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other l

... Show More
View Publication Preview PDF
Crossref (23)
Crossref