Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss function to enforce the proposed model in multiple classification, including five labels, one is normal and four others are attacks (Dos, R2L, U2L and Probe). Accuracy metric was used to evaluate the model performance. The proposed model accuracy achieved to 99.45%. Commonly the recognition time is reduced in the NIDS by using feature selection technique. The proposed DNN classifier implemented with feature selection algorithm, and obtained on accuracy reached to 99.27%.
With a great diversity in the curriculum contemporary monetary and visions, and development that hit the graphic design field, it has become imperative for the workers in the contemporary design research and investigation in accordance with the intellectual treatises and methods of modern criticism, because the work design requires the designer and recipient both know the mechanics of tibographic text analysis in a heavy world of texts and images varied vocabulary and graphics, and designer on before anyone else manages the process of analysis to know what you offer others of shipments visual often of oriented intended from behind, what is meant, in the midst of this world, the curriculum Alsemiae directly overlap with such diverse offer
... Show MoreOne of the significant stages in computer vision is image segmentation which is fundamental for different applications, for example, robot control and military target recognition, as well as image analysis of remote sensing applications. Studies have dealt with the process of improving the classification of all types of data, whether text or audio or images, one of the latest studies in which researchers have worked to build a simple, effective, and high-accuracy model capable of classifying emotions from speech data, while several studies dealt with improving textual grouping. In this study, we seek to improve the classification of image division using a novel approach depending on two methods used to segment the images. The first
... Show MoreIn this paper, new approach based on coupled Laplace transformation with decomposition method is proposed to solve type of partial differential equation. Then it’s used to find the accurate solution for heat equation with initial conditions. Four examples introduced to illustrate the accuracy, efficiency of suggested method. The practical results show the importance of suggested method for solve differential equations with high accuracy and easy implemented.
As they are the smallest functional parts of the muscle, motor units (MUs) are considered as the basic building blocks of the neuromuscular system. Monitoring MU recruitment, de-recruitment, and firing rate (by either invasive or surface techniques) leads to the understanding of motor control strategies and of their pathological alterations. EMG signal decomposition is the process of identification and classification of individual motor unit action potentials (MUAPs) in the interference pattern detected with either intramuscular or surface electrodes. Signal processing techniques were used in EMG signal decomposition to understand fundamental and physiological issues. Many techniques have been developed to decompose intramuscularly detec
... Show MoreObjective: To determine the impact of personal hygiene on woman who complain pelvic inflammatory disease Methodology: A quasi experimental study in the High Institute Infertility Diagnostic and A.R.T.(assistance reproductive technology) in AL-Kadimya city and al-Emamian al Kadmain medical city hospital. The sample collected during (26th ) January – (30th ) April 2014. A purposive sample of (60) women, (30) of them regard as study group and (30) regard as a control group whom they take routine care in the institute and hospital. The questionnaire consisted of socio-demographic data, reproductive heal
This study sought to give a general picture of the organizations and formations of the ground forces of the Abbasid army in its first era, in preparation and armament and continuous development of the mechanisms to help maintain the moral and spiritual morale in the fighting.
Therefore, the caliphs' interest in building the army, organizing it, arming it, choosing competent leaders, and providing them with various weapons in terms of production and storage, as well as taking care of fortifying the cities and gaps in determination and determination, and embarked on construction and restoration, where amazing speed and acted according to the circumstances. During the first Abbasid era, there were significant developments in the military
The aim of this study is to compare the effects of three methods: problem-based learning (PBL), PBL with lecture method, and conventional teaching on self-directed learning skills among physics undergraduates. The actual sample size comprises of 122 students, who were selected randomly from the Physics Department, College of Education in Iraq. In this study, the pre- and post-test were done and the instruments were administered to the students for data collection. The data was analyzed and statistical results rejected null hypothesis of this study. This study revealed that there are no signifigant differences between PBL and PBL with lecture method, thus the PBL without or with lecture method enhances the self-directed learning skills bette
... Show MoreECG is an important tool for the primary diagnosis of heart diseases, which shows the electrophysiology of the heart. In our method, a single maternal abdominal ECG signal is taken as an input signal and the maternal P-QRS-T complexes of original signal is averaged and repeated and taken as a reference signal. LMS and RLS adaptive filters algorithms are applied. The results showed that the fetal ECGs have been successfully detected. The accuracy of Daisy database was up to 84% of LMS and 88% of RLS while PhysioNet was up to 98% and 96% for LMS and RLS respectively.