This work aims to investigate the tensile and compression strengths of heat- cured acrylic resin denture base material by adding styrene-butadiene (S- B) to polymethyl methacrylate (PMMA). The most well- known issue in prosthodontic practice is fracture of a denture base. All samples were a blend of (90%, 80%) PMMA and (10%, 20%) S- B powder melted in Oxolane (Tetra hydro furan). These samples were chopped down into specimens of dimensions 100x10x2.5mm to carry out the requirements of tensile tests. The compression strength test specimens were shaped into a cylinder with dimensions of 12.7mm in diameter and 20mm in length. The experimental results show a significant increase in both tensile and compression strengths when compared to control (standard) results for the preparation material.
Films of pure polystyrene (ps) and doped by bromothymol blue material with percentages(4%) prepared by using casting technique in room temperature , the absorption and transmission spectra has been recorded in the wavelength rang (200-900)nm and calculated refractive index , reflectivity, real and imaginary parts of dielectric constant and extinction coefficient . this study has been done by recording the absorption and transmission spectra by using spectrophotometer .
the shear strength parameters of the treated and untreated gypsum soil under the effect of four soaking and drying cycles has studied in this paper, moreover examined the effect of wetting and drying cycles on the collapse potential of the soil and comparing between the behavior of the treated and untreated gypsum soil under the effect of the two conditions. Gypsum soil sample brought from Sawa lake in Al Muthana governorate with the content of gypsum 65.5%, the polyurethane polymer (PP) was used with different percentages 3, 6, and 10% to enhance the mechanical properties of gypsum soil, model was prepared to achieve four soaking and drying cycle to the samples before testing, this model consists of an Aluminum plate base with dimensions 7
... Show MoreDuring the two last decades ago, audio compression becomes the topic of many types of research due to the importance of this field which reflecting on the storage capacity and the transmission requirement. The rapid development of the computer industry increases the demand for audio data with high quality and accordingly, there is great importance for the development of audio compression technologies, lossy and lossless are the two categories of compression. This paper aims to review the techniques of the lossy audio compression methods, summarize the importance and the uses of each method.
In this work, the synergistic effect of chlorinated rubber (additive I),with zeolite 3A (additive II), zeolite 4A (additive III), and zeolite 5A (additive IV) in (1:1) weight percentage, on the flammability for unsaturated polyester resin was studied in the weight ratios for (3,7,10,13&15%) by preparing films of (130×130×3) mm in diameters. Three standard test methods used to measure were the flame retardation which are; ASTM: D-2863, ASTM: D- 635& ASTM: D-3014. Results obtained from these tests indicated that all of the additives were effective additive IV has the highest efficiency as a flame retardant.
This work investigates removing the Malachite Green (MG) dye, the poly acrylic hydrogel beads used as a surface to adsorb the dye, the isotherm of adsorption was examined and aspects that influence it, like increasing heat, adding salt, the influence of dry beads and effect of shaking. according to the results, the effect of the adsorption has been found that it is matched to the Friendlish equation much more than Langmuir and Temkin equations. A positive relationship between the adsorption process and the increase in temperature is found that adsorption increases when the temperature increase. Also, the adsorption increased when the salt was added at a temperature (of 20 C0). As that the adsorption doesn’t budge by adding either
... Show MoreThis research aims to improve the radiation shielding properties of polymer-based materials by mixing PVC with locally available building materials. Specifically, two key parameters of fast neutron attenuation (removal cross-section and half-value layer) were studied for composite materials comprising PVC reinforced with common building materials (cement, sand, gypsum and marble) in different proportions (10%, 30% and 50% by weight). To assess their effectiveness as protection against fast neutrons, the macroscopic neutron cross-section was calculated for each composite. Results show that neutron cross-section values are significantly affected by the reinforcement ratios, and that the composite material PVC + 50% gypsum is an effect
... Show MoreIraqi siliceous rocks were chosen to be used as raw materials in this study which is concern with the linear shrinkage and their related parameters. They are porcelinite from Safra area (western desert) and Kaolin Duekla, their powders were mixed in certain percentage, to shape compacts and sintered. The study followed with thermal and chemical treatments, which are calcination and acid washing. The effects on final compact properties such as linear shrinkage were studied. Linear shrinkage was calculated for sintered compacts to study the effects of calcination processes, chemical washing, weight percentage, sintering processes, loading moment were studied on this property where the compacts for groups is insulating materials.
Linear
Ultra-High Temperature Materials (UHTMs) are at the base of entire aerospace industry; these high stable materials at temperatures exceeding 1600 °C are used to manage the heat shielding to protect vehicles and probes during the hypersonic flight through reentry trajectory against aerodynamic heating and reducing plasma surface interaction. Those materials are also recognized as Thermal Protection System Materials (TPSMs). The structural materials used during the high-temperature oxidizing environment are mainly limited to SiC, oxide ceramics, and composites. In addition to that, silicon-based ceramic has a maximum-use at 1700 °C approximately; as it is an active oxidation process o
A novel Schiff base ligand (DBC) synthesized from 4-chlorobenzoic acid, along with its Cu (II) and Co (II) complexes, was prepared and characterized using FT-IR, 1H and 13C-NMR, UV-Vis spectroscopy, as well as magnetic and conductivity measurements. Based on this, a tetrahedral structure of [M(DBC)Cl2] was proposed for the complexes. Antioxidant activity of the compounds was assessed and compared to ascorbic acid, revealing that the copper complex exhibited superior antioxidant properties compared to the cobalt complex and the ligand. Furthermore, the antibiofilm potential of the copper and cobalt complexes was assessed against five clinically relevant bacterial species (P.aeruginosa, E.coli, K.pneumoniae, S.aureus and S.typhi) usin
... Show More