Out of 150 clinical samples, 50 isolates of Klebsiella pneumoniae were identified according to morphological and biochemical properties. These isolates were collected from different clinical samples, including 15 (30%) urine, 12 (24%) blood, 9 (18%) sputum, 9 (18%) wound, and 5 (10%) burn. The minimum inhibitory concentrations (MICs) assay revealed that 25 (50%) of isolates were resistant to gentamicin (≥16µg/ml), 22 (44%) of isolates were resistant to amikacin (≥64 µg/ml), 21 (42%) of isolates were resistant to ertapenem (≥8 µg/ml), 18 (36%) of isolates were resistant to imipenem (4- ≥16µg/ml), 43 (86%) of isolates were resistant to ceftriaxone (4- ≥64 µg/ml), 42 (84%) of isolates were resistant to ceftazidime (16-64 µg/ml), and 40 (80%) of isolates were resistant to cefepime (4- ≥16µg/ml). Co-Resistance for both β-lactams and aminoglycosides were detected among 25 (50%) of K. pneumoniae isolates. The extended spectrum beta-lactamases (ESBLs) were detected among 25 (50%) of K. pneumoniae isolates. Screening of 16S rRNA methylases encoding genes revealed that armA was found in 5 (10%) of K. pneumoniae isolates, whereas rmtB was not found among K. pneumoniae isolates. DNA sequencing of armA revealed that the presence of missense mutations in which affected in the translation of protein by substitutions of amino acids, leading to increase the resistance values of MICs for gentamicin and amikacin. These variants were registered in NCBI at the accession number LC373258. The phylogenetic tree of armA variants showed a slight deviation of these variants from K. pneumoniae species.
Beta thalassemia major (BTM) is a genetic disorder that has been linked to an increased risk of contracting blood-borne viral infections, primarily due to the frequent blood transfusions required to manage the condition. One such virus that can be transmitted through blood is the Human Parvovirus B19 (B19V). The aim of this study was to investigate the frequency and molecular detection of B19V. This study included 60 blood donors as controls and 120 BTM patients. B19V was identified by serology, which measured B19-IgG and B19-IgM antibodies. Nested Polymerase Chain Reaction (nPCR) was employed to target the VP1/VP2 structural proteins. The results showed that B19V seropositivity represents 27.5% (33 out of 120) in BTM patients, and
... Show MoreNeuron-derived neurotrophic factor [NENF], a human plasma neurotrophic factor, also increases neurotrophic activity in conjunction with Parkinson's disease-related proteins in Neudesin. Although Neudesin (neuron-derived neurotrophic secreted protein) is a member of the membrane-associated progesterone receptor (MAPR) protein subclass, it is not evolutionary related to the other members of the same family. The expression of Neudesin is found in both brain and spinal cord from embryonic stages to adulthood, as w Neudesin levels in Parkinson's patients with osteoporosis disease and Parkinson's patients without osteoporosis disease, as well as the relationship between Neudesin levels, Anthropometric and Clinical Features (Age, Gender, BMI) and
... Show MoreThe Influence of Some Vitamins and Biochemical Parameters on Iraqi Females’ Patients with Malignant Breast Cancer"
Silver nanoparticles synthesized by different species
KE Sharquie, AA Noaimi, SY Mohsin, 2011 - Cited by 4
Background and Objectives: Urinary tract infections (UTIs), among a wide range of microbial infections, are of a double-edged worry with health-care and economic implications. They are serious diseases that can influence various parts of the urinary tract. The aim of this study was characterization of the enteric bacteria isolated from urine of human UTIs and studying their antimicrobial sensitivity. Materials and methods: A total of 50 urine samples were collected from patients with UTIs of both genders. The isolates identification was done using routine diagnostic methods and confirmed by Vitek2. Antimicrobial susceptibility was done against 10 antimicrobials. Results: Both genders of human were found to suffer from urinary tract problems
... Show More