Preferred Language
Articles
/
bsj-3823
PDCNN: FRAMEWORK for Potato Diseases Classification Based on Feed Foreword Neural Network
...Show More Authors

         The economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work  is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The second level is features extraction which extracts features from the infected area based on hybrid features: grey level run length matrix and 1st order histogram based features. The attributes that extracted from second level are utilized in third level using FFNN to perform the classification process. The proposed framework is applied to database with different backgrounds, totally 120 color potato images, (80) samples used in training the network and the rest samples (40) used for testing. The proposed PDCNN framework is very effective in classifying four types of potato tubers diseases with 91.3% of efficiency.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jan 01 2025
Journal Name
Fusion: Practice And Applications
Enhanced EEG Signal Classification Using Machine Learning and Optimization Algorithm
...Show More Authors

This paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Mon Oct 10 2016
Journal Name
Iraqi Journal Of Science
Satellite image classification using KL-transformation and modified vector quantization
...Show More Authors

In this work, satellite images classification for Al Chabaish marshes and the area surrounding district in (Dhi Qar) province for years 1990,2000 and 2015 using two software programming (MATLAB 7.11 and ERDAS imagine 2014) is presented. Proposed supervised classification method (Modified Vector Quantization) using MATLAB software and supervised classification method (Maximum likelihood Classifier) using ERDAS imagine have been used, in order to get most accurate results and compare these methods. The changes that taken place in year 2000 comparing with 1990 and in year 2015 comparing with 2000 are calculated. The results from classification indicated that water and vegetation are decreased, while barren land, alluvial soil and shallow water

... Show More
Publication Date
Fri Mar 01 2024
Journal Name
Iaes International Journal Of Artificial Intelligence (ij-ai)
Analyzing the behavior of different classification algorithms in diabetes prediction
...Show More Authors

<span lang="EN-US">Diabetes is one of the deadliest diseases in the world that can lead to stroke, blindness, organ failure, and amputation of lower limbs. Researches state that diabetes can be controlled if it is detected at an early stage. Scientists are becoming more interested in classification algorithms in diagnosing diseases. In this study, we have analyzed the performance of five classification algorithms namely naïve Bayes, support vector machine, multi layer perceptron artificial neural network, decision tree, and random forest using diabetes dataset that contains the information of 2000 female patients. Various metrics were applied in evaluating the performance of the classifiers such as precision, area under the c

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Mon Dec 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between some of linear classification models with practical application
...Show More Authors

Linear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear  classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.

In this paper we have been focus for the comparison between three forms for classification data belongs

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Aug 31 2023
Journal Name
Iraqi Geological Journal
Mineral Inversion Approach to Improve Ahdeb Oil Field's Mineral Classification
...Show More Authors

Knowledge of the mineralogical composition of a petroleum reservoir's formation is crucial for the petrophysical evaluation of the reservoir. The Mishrif formation, which is prevalent in the Middle East, is renowned for its mineralogical complexity. Multi-mineral inversion, which combines multiple logs and inversions for multiple minerals at once, can make it easier to figure out what minerals are in the Mishrif Formation. This method could help identify minerals better and give more information about the minerals that make up the formation. In this study, an error model is used to find a link between the measurements of the tools and the petrophysical parameters. An error minimization procedure is subsequently applied to determine

... Show More
View Publication
Scopus (7)
Scopus Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Journal Of Physics: Conference Series
A comparison and classification of land use land cover to estimate their effect on environment: case study in Baghdad city
...Show More Authors
Abstract<p>This study compared and classified of land use and land cover changes by using Remote Sensing (RS) and Geographic Information Systems (GIS) on two cities (Al-Saydiya city and Al-Hurriya) in Baghdad province, capital of Iraq. In this study, Landsat satellite image for 2020 were used for (Land Use/Land Cover) classification. The change in the size of the surface area of each class in the Al-Saydiya city and Al-Hurriya cities was also calculated to estimate their effect on environment. The major change identified, in the study, was in agricultural area in Al-Saydiya city compare with Al-Hurriya city in Baghdad province. The results of the research showed that the percentage of the green </p> ... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Wed Feb 10 2016
Journal Name
Scientific Reports
Experimental demonstration on the deterministic quantum key distribution based on entangled photons
...Show More Authors

As an important resource, entanglement light source has been used in developing quantum information technologies, such as quantum key distribution(QKD). There are few experiments implementing entanglement-based deterministic QKD protocols since the security of existing protocols may be compromised in lossy channels. In this work, we report on a loss-tolerant deterministic QKD experiment which follows a modified “Ping-Pong”(PP) protocol. The experiment results demonstrate for the first time that a secure deterministic QKD session can be fulfilled in a channel with an optical loss of 9 dB, based on a telecom-band entangled photon source. This exhibits a conceivable prospect of ultilizing entanglement light source in real-life fiber-based

... Show More
View Publication
Scopus (17)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Fri Feb 04 2022
Journal Name
Neuroquantology
Detecting Damaged Buildings on Post-Hurricane Satellite Imagery based on Transfer Learning
...Show More Authors

In this article, Convolution Neural Network (CNN) is used to detect damage and no damage images form satellite imagery using different classifiers. These classifiers are well-known models that are used with CNN to detect and classify images using a specific dataset. The dataset used belongs to the Huston hurricane that caused several damages in the nearby areas. In addition, a transfer learning property is used to store the knowledge (weights) and reuse it in the next task. Moreover, each applied classifier is used to detect the images from the dataset after it is split into training, testing and validation. Keras library is used to apply the CNN algorithm with each selected classifier to detect the images. Furthermore, the performa

... Show More
View Publication
Scopus (3)
Scopus Crossref
Publication Date
Thu Sep 01 2016
Journal Name
Journal Of Engineering
Calculating the Transport Density Index from Some of the Productivity Indicators for Railway Lines by Using Neural Networks
...Show More Authors

The efficiency evaluation of the railway lines performance is done through a set of indicators and criteria, the most important are transport density, the productivity of enrollee, passenger vehicle production, the productivity of freight wagon, and the productivity of locomotives. This study includes an attempt to calculate the most important of these indicators which transport density index from productivity during the four indicators, using artificial neural network technology. Two neural networks software are used in this study, (Simulnet) and (Neuframe), the results of second program has been adopted. Training results and test to the neural network data used in the study, which are obtained from the international in

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 01 2013
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Lean accounting and its rolls for calculated costs on value stream
...Show More Authors

At the last two decades , The environment has witnessed tremendous changes in many fields with the huge competition , various technological development and customer satisfaction , that are reflected in economic units a doption for lean production system .                 

      Lean Accounting that has appeared as aresponse for changes occurred of economic units adoption for lean accounting system instead of wide production system : through it management of economic units has been changed from management by top departments into management by value flows : has provide new method for accounting costs according to value flow

... Show More
View Publication Preview PDF