The economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The second level is features extraction which extracts features from the infected area based on hybrid features: grey level run length matrix and 1st order histogram based features. The attributes that extracted from second level are utilized in third level using FFNN to perform the classification process. The proposed framework is applied to database with different backgrounds, totally 120 color potato images, (80) samples used in training the network and the rest samples (40) used for testing. The proposed PDCNN framework is very effective in classifying four types of potato tubers diseases with 91.3% of efficiency.
The present study was performed on 80 female subjects between (30-60) years, who attended the Specialized Center for Endocrinology and Diabetes during the period from April to July; 2011. The subjects were divided into 3 groups : controls , non diabetic autoimmune thyroid patients , and non diabetic autoimmune thyroid patient with renal diseases as complication The results showed a significant increase in serum T 3 T4 levels in hyperthyroidism patients, and significant decrease in serum T3,T4 levels in hypothyroidism patients ,while a significant difference in serum TSH levels in hyperthyroidism and hypothyroidism patients when compared to control group The results show also a significant increase in serum antibodies to thyroid peroxidas
... Show MoreGastrointestinal diseases and especially chronic gastritis are mainly induced by Helicobacter pylori infection, and provides the basis for gastric carcinogenesis and colorectal cancer. The study involved the detection of serum anti-H. pylori IgG and IgA antibody of and some serum biomarkers ;CEA and CA19-9 in patients with gastrointestinal diseases. Fifty eight serum samples were collected from 25 males and 33 females .Peripheral venous blood was collected from each patient and sera obtained by centrifugation. Serum anti-H. pylori IgG and IgA ,serum CEA and CA19-9 were evaluated by enzyme-linked immunoadsorbent assays (ELISA).Forty eight serum samples were positive for IgG (82.7% ) divided int
... Show MoreBackground: The treatment of an ovarian cyst relies on its nature, the discrimination of benign and malignant cysts is, therefore of crucial importance, and in spite of the continuous improvement of diagnostic means, it remains sometimes impossible to differentiate functional from organic (malignant or not) ovarian cysts. The therapeutic decision will search for the main midway between cancer’s negligence and the fear of performing an unnecessary surgical operation for an ovarian cyst.Objective: To review of 116 cases of ovarian cystic diseases aiming in identify proper management and reducing unnecessary surgical intervention.Methods: A retrospective study was conducted at Al-Elwiya maternity teaching hospital/ Baghdad/ Iraq. One hund
... Show MoreThis paper presents a new algorithm in an important research field which is the semantic word similarity estimation. A new feature-based algorithm is proposed for measuring the word semantic similarity for the Arabic language. It is a highly systematic language where its words exhibit elegant and rigorous logic. The score of sematic similarity between two Arabic words is calculated as a function of their common and total taxonomical features. An Arabic knowledge source is employed for extracting the taxonomical features as a set of all concepts that subsumed the concepts containing the compared words. The previously developed Arabic word benchmark datasets are used for optimizing and evaluating the proposed algorithm. In this paper,
... Show MoreThis paper presents the Extended State Observer (ESO) based repetitive control (RC) for piezoelectric actuator (PEA) based nano-positioning systems. The system stability is proved using Linear Matrix Inequalities (LMIs), which guarantees the asymptotic stability of the system. The ESObased RC used in this paper has the ability to eliminate periodic disturbances, aperiodic disturbances and model uncertainties. Moreover, ESO can be tuned using only two parameters and the model free approach of ESO-based RC, makes it an ideal solution to overcome the challenges of nano-positioning system control. Different types of periodic and aperiodic disturbances are used in simulation to demonstrate the effectiveness of the algorithm. The comparison studi
... Show MoreIn this paper, wavelets were used to study the multivariate fractional Brownian motion through the deviations of the random process to find an efficient estimation of Hurst exponent. The results of simulations experiments were shown that the performance of the proposed estimator was efficient. The estimation process was made by taking advantage of the detail coefficients stationarity from the wavelet transform, as the variance of this coefficient showed the power-low behavior. We use two wavelet filters (Haar and db5) to manage minimizing the mean square error of the model.
This article presents a new cascaded extended state observer (CESO)-based sliding-mode control (SMC) for an underactuated flexible joint robot (FJR). The control of the FJR has many challenges, including coupling, underactuation, nonlinearity, uncertainties and external disturbances, and the noise amplification especially in the high-order systems. The proposed control integrates the CESO and SMC, in which the CESO estimates the states and disturbances, and the SMC provides the system robustness to the uncertainty and disturbance estimation errors. First, a dynamic model of the FJR is derived and converted from an underactuated form to a canonical form via the Olfati transformation and a flatness approach, which reduces the complexity of th
... Show MoreIn general, path-planning problem is one of most important task in the field of robotics. This paper describes the path-planning problem of mobile robot based on various metaheuristic algorithms. The suitable collision free path of a robot must satisfies certain optimization criteria such as feasibility, minimum path length, safety and smoothness and so on. In this research, various three approaches namely, PSO, Firefly and proposed hybrid FFCPSO are applied in static, known environment to solve the global path-planning problem in three cases. The first case used single mobile robot, the second case used three independent mobile robots and the third case applied three follow up mobile robot. Simulation results, whi
... Show More