This study is pointed out to estimate the effectiveness of two solvents in the extraction and evaluating the active ingredients and their antioxidant activity as well as anti-cancer efficiency. Therefore, residues from four different Brassica vegetables viz. broccoli, Brussels sprout, cauliflower, and red cherry radish were extracted using two procedures methods: methanolic and water crude extracts. Methanol extracts showed the highest content of total phenolic (TP), total flavonoids (TF), and total tannins (TT) for broccoli and Brussels sprouts residues. Methanolic extract of broccoli and Brussels sprouts residues showed the highest DPPH· scavenging activity (IC50 = 15.39 and 18.64 µg/ml). The methanol and water extracts of Brussels sprout residues showed the highest chelating activity (IC50 = 11.77 and 5.94 µg/ml) and exhibited the highest reducing power (EC50 =14.38 and 20.18 µg/ml) with broccoli respectively. The HPLC analysis of phenolic compounds confirmed that the methanol extract of all the residues examined possessed high amounts of catchine, rutin, cumaric, benzoic, and luteolin. The methanol extract at 100 µg/ml of Brussels sprouts residues displayed a rise cytotoxic effect on HePG2 (80.40%), MCF7 (75.49%) and HCT116 (22.74%) followed by broccoli and red cherry radish, respectively. This result confirmed that Brussels sprouts residue contain effective chemical compounds that can inhibit the proliferation of cancer cells. Therefore, these results proposed that those Brassica vegetable residues might be beneficial as a potent antioxidant and anticancer agents and strongly recommended as fixing in constituent's food applications and pharmaceutical industries.
A comparative study was done on the adsorption of methyl orange dye (MO) using non-activated and activated corn leaves with hydrochloric acid as an adsorbent material. Scanning electron microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR) were utilized to specify the properties of adsorbent material. The effect of several variables (pH, initial dye concentration, temperature, amount of adsorbent and contact time) on the removal efficiency was studied and the results indicated that the adsorption efficiency increases with the increase in the concentration of dye, adsorbent dosage and contact time, while inversely proportional to the increase in pH and temperature for both the treated and untreated corn leav
... Show MoreThere is an interesting potential for the use of GFRP-pultruded profiles in hybrid GFRP-concrete structural elements, either for new constructions or for the rehabilitation of existing structures. This paper provides experimental and numerical investigations on the flexural performance of reinforced concrete (RC) specimens composite with encased pultruded GFRP I-sections. Five simply supported composite beams were tested in this experimental program to investigate the static flexural behavior of encased GFRP beams with high-strength concrete. Besides, the effect of using shear studs to improve the composite interaction between the GFRP beam and concrete as well as the effect of web stiffeners of GFRP were explored. Encasing the GFRP
... Show MoreBy optimizing the efficiency of a modular simulation model of the PV module structure by genetic algorithm, under several weather conditions, as a portion of recognizing the ideal plan of a Near Zero Energy Household (NZEH), an ideal life cycle cost can be performed. The optimum design from combinations of NZEH-variable designs, are construction positioning, window-to-wall proportion, and glazing categories, which will help maximize the energy created by photovoltaic panels. Comprehensive simulation technique and modeling are utilized in the solar module I-V and for P-V output power. Both of them are constructed on the famous five-parameter model. In addition, the efficiency of the PV panel is established by the genetic algorithm
... Show MoreIn the present study, the effectiveness of a procedure of electrocoagulation for removing chemical oxygen demand (COD) from the wastewater of petroleum refinery has been evaluated. Aluminum and stainless steel electrodes were used as a sacrificial anode and cathode respectively. The effect of current density (4-20mAcm−2), pH (3-11), and NaCl concentration (0-4g/l) on efficiency of removal of chemical oxygen demand was investigated. The results have shown that increasing of current density led to increase the efficiency of COD removal while increasing NaCl concentration resulted in decreasing of COD removal efficiency. Effect of pH was found to be lowering COD re
In this work, metal oxide nanostructures, mainly copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure, were synthesized by the DC reactive magnetron sputtering technique. The effect of deposition time on the spectroscopic characteristics, as well as on the nanoparticle size, was determined. A long deposition time allows more metal atoms sputtered from the target to bond to oxygen atoms and form CuO, NiO, or TiO2 molecules deposited as thin films on glass substrates. The structural characteristics of the final samples showed high structural purity as no other compounds than CuO, NiO, and TiO2 were found in the final samples. Also, the prepared multilayer structures did not show new compounds other than th
... Show MoreA comparative study was done on the adsorption of methyl orange dye (MO) using non-activated and activated corn leaves with hydrochloric acid as an adsorbent material. Scanning electron microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR) were utilized to specify the properties of adsorbent material. The effect of several variables (pH, initial dye concentration, temperature, amount of adsorbent and contact time) on the removal efficiency was studied and the results indicated that the adsorption efficiency increases with the increase in the concentration of dye, adsorbent dosage and contact time, while inversely proportional to the increase in pH and temperature for both the treated and untreated corn leaves. The equi
... Show MoreThe cost‐effective dual functions zeolite‐carbon composite (DFZCC) was prepared using an eco‐friendly substrate prepared from bio‐waste and an organic adhesive at intermediate conditions. The green synthesis method used in this study ensures that chemically harmless compounds are used to obtain a homogeneous distribution of zeolite over porous carbon. The greenly prepared dual‐function composite was extensively characterized using Fourier transform infrared, X‐ray diffraction, thermogravimetric analysis, N2 adsorption/desorption isotherms, field emission scanning electron microscope, dispersive analysis by X‐ray, and point of zero charges. DFZCC had a surface area o
Fluconazole was used to test the susceptibility of Candida albicans isolated from different clinical samples, and to detect mutations in ERG11 gene, and their relationship to fluconazole resistance. Forty-eight isolates of Candida albicans were tested for susceptibility using the disc diffusion method (M-44). ERG11 genes of six isolates were amplified (four resistant, two susceptible) and sequenced. The sequenced genes were analyzed to detect the mutations. Out of 48 isolates of Candida albicans, 4 (8%) were resistant to fluconazole. Sixteen-point mutations were detected included 13 silent mutations, and three missense mutations. The mutations of A945C (E266D) and G1609A (V488I) were found only in susceptible Candida albicans isolates, whil
... Show More