Emissions of particulate matter from nanopapers as well as inks and organic solvents during the printing operationand copying machines constitute a threat to human health, especially with long time exposure in closed working environments. The present study was conducted in some printing houses and copying centers of Baghdad city during February and April .The studyproved the occurrence of an air pollution problem concerning lead and zinc contents in all the study sites. The levels of Pb, Zn and Cu were collected by low volume sampler from the air of the study sites then filter papers digested and determined the heavy metals by flame atomic spectrophotometer. Particulate matter was measured by Aerocet, Microtector meter device was used to measure nitrogen dioxide, sulphur dioxide, carbon monoxide and volatile organic compounds . The highest concentrations of lead and zinc were recorded in the printing houses air (2.75μg/m3) and (51.95μg/m3) respectively. In contrast,copper concentration in the copying offices air recorded a significantly higher value (0.65μg/m3) (P>0.05) as compared to that in printing houses. Fine particulate matter(PM2.5)(particles diameter < 2.5 μm) hasrecorded the highest concentration (44.50μg/m3) in printing houses, followed by the highest concentrations of inhalable coarse particulate matter (PM10) (particles with diameter of 2.5 to 10 μm) and total suspended particulates (TSP)(the total of solid particles) (477.66 and 667.00μg/m3) respectively in printing houses. The results obviously showed the highest concentrations of carbon monoxide (CO) (6.13 ppm) and volatile organic compounds (VOCs) (21.88 ppm) in printing houses, while nitrogen dioxide (NO2) recorded its highest concentration (1.44 ppm) in copy centers. Lead, zinc, copper, PM2.5, PM10 and TSP concentrations exceeded the permissble levels in all study sites converselywith the levels of carbon monoxide , nitrogen dioxide, sulphur dioxide(SO2) and volatile organic compounds that were within permissible air quality standards.
Surface drip irrigation is one of the most conservative irrigation techniques that help control providing water directly on the soil through the emitters. It can supply fertilizer and providing water directly to plant roots by drippers. One of the essential needs for trickle irrigation nowadays is to obtain more knowledge about the moisture pattern under the trickling source for various types of soil with various discharge levels with trickle irrigation. Simulation numerical using HYDRUS-2D software, version 2.04 was used to estimate an equation for the wetted area from a single surface drip irrigation in unsaturated soil is taking into account water uptake by roots. In this paper, using two soil types were used, namely
... Show MoreThe research focuses on how to reach a mechanism that assists experts, engineers, and others in the architectural & engineering project to verify the co-existence of values and sustainability constituents in it. Research problem shows a clear lack, locally, in the interest to establish a value system and a list that cares about comprehending building components whether considering sustainable building criteria. Hypothesis shows that in order to head towards the applicable sustainable approach of buildings, then a local assessment system should be established to evaluate buildings during its life cycle, and from which buildings would be categorized as sustainable or not. Research aims at establishing main and general
... Show MoreSoil improvement has developed as a realistic solution for enhancing soil properties so that structures can be constructed to meet project engineering requirements due to the limited availability of construction land in urban centers. The jet grouting method for soil improvement is a novel geotechnical alternative for problematic soils for which conventional foundation designs cannot provide acceptable and lasting solutions. The paper's methodology was based on constructing pile models using a low-pressure injection laboratory setup built and made locally to simulate the operation of field equipment. The setup design was based on previous research that systematically conducted unconfined compression testing (U.C.Ts.). Th
... Show MoreThe impacts of numerous important factors on the Energy Absorption (EA) of torsional Reinforced Concrete (RC) beams strengthened with external FRP is the main purpose and innovation of the current research. A total of 81 datasets were collected from previous studies, focused on the investigation of EA behaviour. The impact of nine different parameters on the Torsional EA of RC-beams was examined and evaluated, namely the concrete compressive strength (f’c), steel yield strength (fy), FRP thickness (tFRP), width-to-depth of the beam section (b/h), horizontal (ρh) and vertical (ρv) steel ratio, angle of twist (θu), ultimate torque (Tu), and FRP ultimate strength (fy-FRP). For the evaluation of the energy absorption capacity at di
... Show MoreCombining ultrasonic irradiation and the Fenton process as a sono-Fenton process, the chemical oxygen demand (COD) in refinery wastewater was successfully eliminated using response surface methodology (RSM) with central composite design (CCD). The impact of two main influential operational parameters (iron dosage and reaction time) on the COD removal from wastewater generated by an Iraqi petroleum refinery facility was explored. Removal of 85.81% was attained under the optimal conditions of 21 minutes and 0.289 mM of concentration. Additionally, the results revealed that the concentration of has the highest effect on the COD elimination, followed by reaction time. The high R2 value (96.40%) validated the strong fit of the mo
... Show MoreIn this work, a weighted H lder function that approximates a Jacobi polynomial which solves the second order singular Sturm-Liouville equation is discussed. This is generally equivalent to the Jacobean translations and the moduli of smoothness. This paper aims to focus on improving methods of approximation and finding the upper and lower estimates for the degree of approximation in weighted H lder spaces by modifying the modulus of continuity and smoothness. Moreover, some properties for the moduli of smoothness with direct and inverse results are considered.
This work presents the use of laser diode in the fiber distributed data interface FDDI networks. FDDI uses optical fiber as a transmission media. This solves the problems resulted from the EMI, and noise. In addition it increases the security of transmission. A network with a ring topology consists of three computers was designed and implemented. The timed token protocol was used to achieve and control the process of communication over the ring. Nonreturn to zero inversion (NRZI) modulation was carried out as a part of the physical (PHY) sublayer. The optical system consists of a laser diode with wavelength of 820 nm and 2.5 mW maximum output power as a source, optical fiber as a channel, and positive intrinsic negative (PIN) photodiode
... Show MoreWe propose an intraguild predation ecological system consisting of a tri-trophic food web with a fear response for the basal prey and a Lotka–Volterra functional response for predation by both a specialist predator (intraguild prey) and a generalist predator (intraguild predator), which we call the superpredator. We prove the positivity, existence, uniqueness, and boundedness of solutions, determine all equilibrium points, prove global stability, determine local bifurcations, and illustrate our results with numerical simulations. An unexpected outcome of the prey's fear of its specialist predator is the potential eradication of the superpredator.