Metaheuristics under the swarm intelligence (SI) class have proven to be efficient and have become popular methods for solving different optimization problems. Based on the usage of memory, metaheuristics can be classified into algorithms with memory and without memory (memory-less). The absence of memory in some metaheuristics will lead to the loss of the information gained in previous iterations. The metaheuristics tend to divert from promising areas of solutions search spaces which will lead to non-optimal solutions. This paper aims to review memory usage and its effect on the performance of the main SI-based metaheuristics. Investigation has been performed on SI metaheuristics, memory usage and memory-less metaheuristics, memory characteristics and memory in SI-based metaheuristics. The latest information and references have been further analyzed to extract key information and mapped into respective subsections. A total of 50 references related to memory usage studies from 2003 to 2018 have been investigated and show that the usage of memory is extremely necessary to increase effectiveness of metaheuristics by taking the advantages from their previous successful experiences. Therefore, in advanced metaheuristics, memory is considered as one of the fundamental elements of an efficient metaheuristic. Issues in memory usage have also been highlighted. The results of this review are beneficial to the researchers in developing efficient metaheuristics, by taking into consideration the usage of memory.
Attention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained w
... Show MorePersonal intelligence is thinking about an other person , understanding him, have sympathy and differentiation between people, and to appreciate their own point of view, with the sensitivity to their motives, behavior, and goals, so this intelligence involves dealing with a person or group of persons effectively and in normal or logical manner.
Emotions management is to achieve emotional balance by controlling the emotions continuously, self disciplining, keeping away from excitement sources, and dealing with bad situations in constructive way to achieve the psychological stability .
- the study aims
In this research a proposed technique is used to enhance the frame difference technique performance for extracting moving objects in video file. One of the most effective factors in performance dropping is noise existence, which may cause incorrect moving objects identification. Therefore it was necessary to find a way to diminish this noise effect. Traditional Average and Median spatial filters can be used to handle such situations. But here in this work the focus is on utilizing spectral domain through using Fourier and Wavelet transformations in order to decrease this noise effect. Experiments and statistical features (Entropy, Standard deviation) proved that these transformations can stand to overcome such problems in an elegant way.
... Show MoreThere is various human biometrics used nowadays, one of the most important of these biometrics is the face. Many techniques have been suggested for face recognition, but they still face a variety of challenges for recognizing faces in images captured in the uncontrolled environment, and for real-life applications. Some of these challenges are pose variation, occlusion, facial expression, illumination, bad lighting, and image quality. New techniques are updating continuously. In this paper, the singular value decomposition is used to extract the features matrix for face recognition and classification. The input color image is converted into a grayscale image and then transformed into a local ternary pattern before splitting the image into
... Show MoreAbstract
The study aims to build a training program based on the Connectivism Theory to develop e-learning competencies for Islamic education teachers in the Governorate of Dhofar, as well as to identify its effectiveness. The study sample consisted of (30) Islamic education teachers to implement the training program, they were randomly selected. The study used the descriptive approach to determine the electronic competencies and build the training program, and the quasi-experimental approach to determine the effectiveness of the program. The study tools were the cognitive achievement test and the observation card, which were applied before and after. The study found that the effectiveness of the training program
... Show MoreAbstract :
This present paper sheds the light on dimensions of scheduling the service that includes( the easiness of performing the service, willingness , health factors, psychological sides, family matters ,diminishing the time of waiting that improve performance of nursing process including ( the willingness of performance, the ability to perform the performance , opportunity of performance) . There is genuine problem in the Iraqi hospitals lying into the weakness of nursing staffs , no central decision to define and organize schedules. Thus the researcher has chosen this problem as to be his title . The research come a to develop the nursing service
... Show MoreHuman beings are starting to benefit from the technology revolution that witness in our time. Where most researchers are trying to apply modern sciences in different areas of life to catch up on the benefits of these technologies. The field of artificial intelligence is one of the sciences that simulate the human mind, and its applications have invaded human life. The sports field is one of the areas that artificial intelligence has been introduced. In this paper, artificial intelligence technology Fast-DTW (Fast-Dynamic Time Warping) algorithm was used to assess the skill performance of some karate skills. The results were shown that the percentage of improvement in the skill performance of Mai Geri is 100%.
The topological indices of the "[(µ3-2, 5-dioxyocyclohexylidene)-bis ((2-hydrido)-nonacarbonyltriruthenium]” were studied within the quantum theory of atoms in the molecule (QTAIM), clusters are
analyzed using the density functional theory (DFT). The estimated topological variables accord with prior
descriptions of comparable transition metal complexes. The Quantum Theory of Atom, in molecules
investigation of the bridging core component, Ru3H2, revealed critical binding points (chemical bonding)
between Ru (1) and Ru (2) and Ru (3). Consequently, delocalization index for this non-bonding interaction
was calculated in the core of Ru3H2, the interaction is of the (5centre–5electron) class.
In this work, an enhanced Photonic Crystal Fiber (PCF) based on Surface Plasmon Resonance (SPR) sensor using a sided polished structure for the detection of toxic ions Arsenic in water was designed and implemented. The SPR curve can be obtained by polishing the side of the PCF after coating the Au film on the side of the polished area, the SPR curve can be obtained. The proposed sensor has a clear SPR effect, according to the findings of the experiments. The estimated signal to Noise Ratio (SNR), sensitivity (S), resolution (R), and Figures of merit (FOM) are approaching; the SNR is 0.0125, S is 11.11 μm/RIU, the resolution is 1.8x〖10〗^(-4), and the FOM is 13.88 for Single-mode Fiber- Photonic Crystal Fiber- single mode Fiber (SMF-P
... Show More