Sequence covering array (SCA) generation is an active research area in recent years. Unlike the sequence-less covering arrays (CA), the order of sequence varies in the test case generation process. This paper reviews the state-of-the-art of the SCA strategies, earlier works reported that finding a minimal size of a test suite is considered as an NP-Hard problem. In addition, most of the existing strategies for SCA generation have a high order of complexity due to the generation of all combinatorial interactions by adopting one-test-at-a-time fashion. Reducing the complexity by adopting one-parameter- at-a-time for SCA generation is a challenging process. In addition, this reduction facilitates the supporting for a higher strength of coverage. Motivated by such challenge, this paper proposes a novel SCA strategy called Dynamic Event Order (DEO), in which the test case generation is done using one-parameter-at-a-time fashion. The details of the DEO are presented with a step-by-step example to demonstrate the behavior and show the correctness of the proposed strategy. In addition, this paper makes a comparison with existing computational strategies. The practical results demonstrate that the proposed DEO strategy outperforms the existing strategies in term of minimal test size in most cases. Moreover, the significance of the DEO increases as the number of sequences increases and/ or the strength of coverage increases. Furthermore, the proposed DEO strategy succeeds to generate SCAs up to t=7. Finally, the DEO strategy succeeds to find new upper bounds for SCA. In fact, the proposed strategy can act as a research vehicle for variants future implementation.
The Jeribe Formation, the Jambour oil field, is the major carbonate reservoir from the tertiary reservoirs of the Jambour field in northern Iraq, including faults. Engineers have difficulty organizing carbonate reserves since they are commonly tight and heterogeneous. This research presents a geological model of the Jeribe reservoir based on its facies and reservoir characterization data (Permeability, Porosity, Water Saturation, and Net to Gross). This research studied four wells. The geological model was constructed with the Petrel 2020.3 software. The structural maps were developed using a structural contour map of the top of the Jeribe Formation. A pillar grid model with horizons and layering was designed for each zone. Followin
... Show MoreThe fluctuation and expansion ratios have been studied for cylindrical gas-solid fluidized columns by using air as fluidizing medium and Paracetamol as the bed material. The variables were the column diameter (0.0762, 0.15, and 0.18 m), static bed height (0.05, 0.07, and 0.09 m), and air velocity to several times of minimum fluidization velocity. The results showed that both the fluctuation and expansion ratios had a direct relation with air velocity and an inverse one with column diameter and static bed height. A good agreement was between the experimental results and the calculated values by using the correlation equations from the literature.
This paper proposes feedback linearization control (FBLC) based on function approximation technique (FAT) to regulate the vibrational motion of a smart thin plate considering the effect of axial stretching. The FBLC includes designing a nonlinear control law for the stabilization of the target dynamic system while the closedloop dynamics are linear with ensured stability. The objective of the FAT is to estimate the cubic nonlinear restoring force vector using the linear parameterization of weighting and orthogonal basis function matrices. Orthogonal Chebyshev polynomials are used as strong approximators for adaptive schemes. The proposed control architecture is applied to a thin plate with a large deflection that stimulates the axial loadin
... Show MoreIn this paper, a design of the broadband thin metamaterial absorber (MMA) is presented. Compared with the previously reported metamaterial absorbers, the proposed structure provides a wide bandwidth with a compatible overall size. The designed absorber consists of a combination of octagon disk and split octagon resonator to provide a wide bandwidth over the Ku and K bands' frequency range. Cheap FR-4 material is chosen to be a substate of the proposed absorber with 1.6 thicknesses and 6.5×6.5 overall unit cell size. CST Studio Suite was used for the simulation of the proposed absorber. The proposed absorber provides a wide absorption bandwidth of 14.4 GHz over a frequency range of 12.8-27.5 GHz with more than %90 absorp
... Show MoreThe history of the Olympic movement in Iraq is a rich history that reflects the interest of Iraqi governments and society in sports, the social and economic conditions, and international relations, and highlights the intersection of sports and politics and the impact of global events on local sports development. Therefore, providing a valuable insight into the reality of the participation and results achieved by Iraq in the Olympic Games for the period under study helps in giving a broader understanding of Iraq’s position in the global sports community. The research aims to document the important events in the development of the Olympic movement in Iraq for the period (1929-2000) and explore the formation and development of the Iraqi Olym
... Show MoreIn the years recently city planning projects have been confirmed sustainable high concentration on planning streets and pedestrian paths being the most prominent component of the urban structure in the city and these me and diverse departments link the city’s sectors and serve as a space for economic, service, and social activities. On the other hand, pedestrian traffic is an essential component of the various means of transportation within the city. Suffer cities in the Middle East and Arab cities in particular are neglecting pedestrian paths in the vital urban environment. Vehicle control mechanisms on roads, and changing the uses of pedestrian paths as result of encroaching on the sidewalks designated for pedestrians. Which leads to a
... Show MoreMost Internet of Vehicles (IoV) applications are delay-sensitive and require resources for data storage and tasks processing, which is very difficult to afford by vehicles. Such tasks are often offloaded to more powerful entities, like cloud and fog servers. Fog computing is decentralized infrastructure located between data source and cloud, supplies several benefits that make it a non-frivolous extension of the cloud. The high volume data which is generated by vehicles’ sensors and also the limited computation capabilities of vehicles have imposed several challenges on VANETs systems. Therefore, VANETs is integrated with fog computing to form a paradigm namely Vehicular Fog Computing (VFC) which provide low-latency services to mo
... Show More