Thin films of Magnetite have been deposited on Galvanized Steel (G-S) alloy using RF-reactive magnetron sputtering technique and protection efficiency of the corrosion of G-S. A Three-Electrodes Cell was used in saline water (3.5 % NaCl) solution at different temperatures (298, 308, 318 & 328K) using potentiostatic techniques with. Electrochemical Impedance Spectroscopy (EIS) and fitting impedance data via Frequency Response Analysis (FRA) were applied to G-S alloy with Fe3O4 and tested in 3.5 % NaCl solution at 298K.Results taken from Nyquist and Bode plots were analyzed using software provided with the instrument. The results obtained show that the rate of corrosion of G.S alloy increased with increasing the temperatures from 298 to 323K; and showed that deposition of Fe3O4 caused protection efficiency to reach 79.76% for G-S in 318K. In addition the enthalpy & entropy of activation were evaluated. Apparent energies of activation have been calculated for the corrosion process of uncoated and coated G.S alloy by sputtering technique in saline water (3.5 % NaCl). The morphological analysis was carried out using Scanning Electron Microscopy (SEM) technique.
The assessment of the environmental impact of the cement industry using the Leopold Matrix is to determine the negative and positive impacts on the environment resulting from this industry, and what are the long-term and short-term effects, direct and indirect, and the amount of these effects and potential risks, and that this evaluation process is done through a number of methods, including Matrix method, including (Leopold).
The importance of the research because the cement occupies is of great importance in the world, especially in our country, Iraq, in the sector of construction and modernity, and the toxic emissions and solid waste produced by the production of this material. <
... Show MoreStone columns are widely used globally due to theirversatility and relative wide applicability to treat different soil and foundation situations but much of the research undertaken to date has focused on their use in soft soils. In countries like Iraq the use of stone columns is still limited from a practical point of view, chiefly as many other soil conditions are commonly encountered. These include collapsible soils: soils that are prone to relatively rapid volume compressions (through collapse of metastable fabrics) that occur due to the action of load and/or increases in water content. Recent work has opened up the possibility to use stone columns in these soils by the use of encasement, thereby overcoming the impact of loss of lateral
... Show MoreForward osmosis (FO) process was applied to concentrate the orange juice. FO relies on the driving force generating from osmotic pressure difference that result from concentration difference between the draw solution (DS) and orange juice as feed solution (FS). This driving force makes the water to transport from orange juice across a semi-permeable membrane to the DS without any energy applied. Thermal and pressure-driven dewatering methods are widely used, but they are prohibitively energy intensive and hence, expensive. Effects of various operating conditions on flux have been investigated. Four types of salts were used in the DS, (NaCl, CaCl2, KCl, and MgSO4) as osmotic agent and the experiments were performed at the concentration of
... Show MoreThis research was aimed to study the osmotic efficiency of the draw solutions and the factors affecting the performance of forward osmosis process : The draw solutions used were magnesium sulfate hydrate (MgSO4.7H2O) pojtassium chloride (KCL), calcium chloride (CaCl2) and ammonium bicarbonate (NH4HCO3). It was found that water flux increases with increasing draw solution concentration, and feed solution flow rate and decreases with increasing draw solution flow rate and feed solution concentration. And also found that the efficiency of the draw solutions is in the following order:
CaCl2> KCI > NH4HCO3> MgSO4.7H
Urban land uses of all kinds are the constituent elements of the urban spatial structure. Because of the influence of economic and social factors, cities in general are characterized by the dynamic state of their elements over time. Urban functions occur in a certain way with different spatial patterns. Hence, urban planners and the relevant urban management teams should understand the future spatial pattern of these changes by resorting to quantitative models in spatial planning. This is to ensure that future predictions are made with a high level of accuracy so that appropriate strategies can be used to address the problems arising from such changes. The Markov chain method is one of the quantitative models used in spatial planning to ana
... Show More