The unpredictable and huge data generation nowadays by smart computing devices like (Sensors, Actuators, Wi-Fi routers), to handle and maintain their computational processing power in real time environment by centralized cloud platform is difficult because of its limitations, issues and challenges, to overcome these, Cisco introduced the Fog computing paradigm as an alternative for cloud-based computing. This recent IT trend is taking the computing experience to the next level. It is an extended and advantageous extension of the centralized cloud computing technology. In this article, we tried to highlight the various issues that currently cloud computing is facing. Here in this research article, we present a comprehensive review of fog computing, differentiating it from cloud computing, also present various use-cases of fog computing in different domains, we came to conclude that Fog computing leads in an efficient energy resource management, leveraging the energy both in terms of consumption and cost scenarios. Further, we highlighted its key features, challenges and issues, resource optimization methods.
This review examines how artificial intelligence (AI) including machine learning (ML), deep learning (DL), and the Internet of Things (IoT) is transforming operations across exploration, production, and refining in the Middle Eastern oil and gas sector. Using a systematic literature review approach, the study analyzes AI adoption in upstream, midstream, and downstream activities, with a focus on predictive maintenance, emission monitoring, and digital transformation. It identifies both opportunities and challenges in applying AI to achieve environmental and economic goals. Although adoption levels vary across the region, countries such as Saudi Arabia, the UAE, and Qatar are leading initiatives that align with global sustainability targets.
... Show MoreNumerous trace elements, notably metals, are essential for the normal functioning of several biological reactions, especially as enzyme cofactors. Several Trace elements refer to essential micronutrients required in minimal quantities for certain biological functions pertaining to human metabolism, albeit their minimal concentrations in the organism. Nonetheless, our understanding of this topic is considerably restricted, and emerging insights into their metabolic functions necessitate contributions and have implications across various domains, encompassing nutritional chemistry, with a focus on analytical chemistry, biological sciences, medicine, pharmacology, and agricultural sciences.
Numerous trace elements, notably metals, are essential for the normal functioning of several biological reactions, especially as enzyme cofactors. Several Trace elements refer to essential micronutrients required in minimal quantities for certain biological functions pertaining to human metabolism, albeit their minimal concentrations in the organism. Nonetheless, our understanding of this topic is considerably restricted, and emerging insights into their metabolic functions necessitate contributions and have implications across various domains, encompassing nutritional chemistry, with a focus on analytical chemistry, biological sciences, medicine, pharmacology, and agricultural sciences.
Wastewater recycling for non-potable uses has gained significant attention to mitigate the high pressure on freshwater resources. This requires using a sustainable technique to treat natural municipal wastewater as an alternative to conventional methods, especially in arid and semi-arid rural areas. One of the promising techniques applied to satisfy the objective of wastewater reuse is the constructed wetlands (CWs) which have been used extensively in most countries worldwide through the last decades. The present study introduces a significant review of the definition, classification, and components of CWs, identifying the mechanisms controlling the removal process within such units. Vertical, horizontal, and hybrid CWs
... Show MoreIn this work, the effect of annealing temperature on the electrical properties are studied of p-Se/ n-Si solar cell, which p-Se are deposit by DC planar magnetron sputtering technique on crystal silicon. The chamber was pumped down to 2×10−5 mbar before admitting the gas in. The gas was Ar. The sputtering pressure varied within the range of 4x10-1 - 8x10-2mbar by adjusting the pumping speed through the opening control of throttle valve. The electrical properties are included the C-V and I-V measurements. From C-V measurements, the Vbi are calculated while from I-V measurements, the efficiency of solar cell is calculated.