Metal nanoparticles can serve as an efficient nano-heat source with confinement photothermal effects. Thermo-plasmonic technology allows researchers to control the temperature at a nanoscale due to the possibility of precise light propagation. The response of opto-thermal generation of single gold-silica core-shell nanoparticle immersed in water and Poly-vinylpyrrolidone surrounding media is theoretically investigated. Two lasers (CW and fs pulses) at the plasmonic resonance (532 nm) are utilized. For this purpose, finite element method is used via COMSOL multiphysics to find a numerical computation of absorption cross section for the proposed core –shell NP in different media. Thermo-plasmonic response for both lasers is studied. The heat profile of different nanostructures is estimated. The results revealed that the temperature distribution profile was varied due to changing in the relative volume fraction between the core and the shell of nanoparticle.
Visualization of water flow around different bluff bodies at different Reynolds number ranging (1505 - 2492) was realized by designing and building a test rig which contains an open channel capable to ensure water velocity range (4-8cm/s) in this channel. Hydrogen bubbles generated from the ionized water using DC power supply are visualized by a light source and photographed by a digital camera. Flow pattern around a circular disk of (3.6cm) diameter and (3mm) thickness, a sphere of (3.8cm) diameter and a cylinder of
(3.2cm) diameter and (10cm) length are studied qualitatively. Parameters of the vortex ring generated in the wake region of the disk and the separation angle of water stream lines from the surface of the sphere are plott
Investment drives the wheel of the development of different developed and developing countries. Sudan is a model for a developing country facing a lot of difficulties in the field of both local and foreign investment. The present study was focused on the problem of poor diversification and efficiency of both local and foreign investment in Sudan. Also, it clarified the important role of administrative supervision to strengthen the efficiency of investment, taking the experience of the Sudan as a model. The researchers used the well-known descriptive and analytical tools (questionnaire, interview, observation) to complete this study. A well designed questionnaire was used. It included all questions that could cover all aspects of
... Show MoreContamination of surface and groundwater with excessive concentrations of fluoride is of significant health hazard. Adsorption of fluoride onto waste materials of no economic value could be a potential approach for the treatment of fluoride-bearing water. This experimental and modeling study was devoted to investigate for the first the fluoride removal using unmodified waste granular brick (WGB) in a fixed bed running in continuous mode. Characterization of WGB was carried out by FT-IR, SEM, and EDX analysis. The batch mode experiments showed that they were affected by several parameters including contact time, initial pH, and sorbent dosage. The best values of these parameters that provided maximum removal percent (82%) with the in
... Show More
The present work aims to study the efficiency of coagulation/ flocculation as 1st stage, natural gravity water filter or microfiltration (MF) as 2nd stage and nanofiltration (NF) technology as final stage for treatment of water of main outfall drain (MOD) for injection in Nasiriyah oil field. Effects of operating parameters such as coagulant dosage, speed and time of slow mixing step and settling time in the 1st stage were studied. Also feed turbidity and total suspended solids (TSS) in the 2
... Show MoreThe purpose of this paper is to build a simulation model by using HEC-RAS software to simulate the reality of water movement in the main river of Basra City (South of Iraq) which is known as Siraji-Khoura River. The main objective of the simulation is to detect areas where the water cycle is interrupted in some stations of the river stream, as this river has become an outlet for the disposal of sewage, leading to pollution and causing weakness in some sections of the river & obstructing the water cycle that takes place between this river and Shatt al – Arab river. A field survey data of the river and its banks were adopted to derive the grades, longitudinal and cross sections of the river, these data included three-dimensional coordinates
... Show MoreField experiment was conducted to test the effect of saline water and fertilizers rate on Pisum sativum L. plants . Treatments of the experiment included two levels of water salinity (2, 7 dSm-1) as a main plot and three levels of potash fertilization K2SO4 (44%K) namely 150 control, 300 and 450 kg/Donum as a sub plot. Results indicated that irrigation of plant with saline water 7 dSm-¹ caused a significant decrease in K and P contents specially in the upper parts of the plants , the percentage of the K increased (2.80%) under 2 dSm-¹of irrigation water and 300 kg/ donum fertilizer rate in the upper leaves, However K decreased(1.10%) in lower leaves under 7 dSm-¹ and 300 kg/donum fertilizer. while P increased in pods und
... Show MoreWhile traditional energy sources such as oil, coal, and natural gas drive economic growth, they also seriously affect people’s health and the environment. Renewable energies (RE) are presently seen as an efficient choice for attaining long-term sustainability in development. They provide an adequate response to climate change and supply sufficient electricity. The current situation in Iraq results from a decades-long scarcity of reliable electricity, which has impacted various industries, including agriculture. There are diverse prospects for using renewable energy sources to address the present power crisis. The economic and environmental impacts of renewable energy systems were investigated in this study by using the solar pumpi
... Show MoreThe aim of research is to show the effect of Ferric Oxide (Fe2O3) on the electricity production and wastewater treatment, since 2.5% of Ferric Oxide (Fe2O3) (heated and non heated) nanoparticles has been used. Characterization of nanoparticles was done using X-ray Diffraction (XRD) and Scan Electron Microscopy (SEM). The influence of acidity was also studied on both wastewater treatmenton the Chemical Oxygen demand (COD) and Biological Oxygen Demand (BOD) and voltage output was studied. From the results, it was infused that the dosage of 0.025 g/l and an initial pH 7 were founded to be optimum for the effective degradation of effluents. The results concluded that the treatment of anaerobic sludge wastewater using Ferric Oxide (Fe2O3) in
... Show MoreIn the present study, chitosan Schiff base has been prepared from chitosan reaction with p-chloro benzaldehyde. The AuNPs and AgNPs were manufactured by extract of onion peels as a reducing agent. The AuNPs and AgNPs that have been synthesized were characterized through UV-vis spectroscopy, XRD analyses and SEM microscopy. The polymer blends of the chitosan / PEG has been prepared by using the approach of solution casting. Chitosan Schiff base / PEG Au and Ag nanocomposites were synthesized, nanocomposites and polymer blends have been characterized by FTIR which confirm the formation of Schiff base by revealing a new band of absorption at 1693 cm-1 as a result of the (C=N) imine group. FESEM, DSC and TGA confirm the thermal stability
... Show More