Cutaneous leishmaniasis is a disease caused by Leishmania tropica parasite. Current treatments for this parasite are undesirable because of their toxicity, resistance, and high cost. Macrophages are key players against pathogens. Nitric oxide (NO), a molecule produce by immune cells, controls intracellular killing of pathogens during infection. Silver nanoparticles (Ag NPs) demonstrated broad-spectrum activity against various types of infectious diseases. It has the ability to stimulate oxygen species production. This study aims to analyze the macrophages activation through NO production and estimate the cytotoxicity based on the lactate dehydrogenase (LDH) release upon exposure to L. tropica and Ag NPs. Serially concentrations of Ag NPs were used under two conditions during and following macrophages exposure to L. tropica. MTT assay was used to determine the cytotoxicity of Ag NPs on L. tropica amastigotes during infection of macrophages in vitro. The results showed that by increasing the Ag NPs concentrations, the viability percentage of L. tropica amastigotes decreased and reached to 21.7 ± 0.64 % during infection compared with the control. The 50% inhibitory concentration of Ag NPs on amastigotes was 2.048µg/ml during infection. Moreover, post-phagocytosis study involved the assessment of NO and LDH release by macrophages upon exposure to L. tropica. It have shown that untreated macrophages released low levels of NO while in the presence of Ag NPs, macrophages were activated to produce higher levels of NO under all experimental conditions. On the other hand, macrophages were capable of controlling cytotoxicity and decreasing LDH levels during phagocytosis of L. tropica amastiogotes. Taking together, these findings suggest that Ag NPs can enhance macrophages NO production which provides a method for the identification of Ag NPs ligands with microbicidal and anti-cytotoxic properties against L. tropica pathogens.
Fraud Includes acts involving the exercise of deception by multiple parties inside and outside companies in order to obtain economic benefits against the harm to those companies, as they are to commit fraud upon the availability of three factors which represented by the existence of opportunities, motivation, and rationalization. Fraud detecting require necessity of indications the possibility of its existence. Here, Benford’s law can play an important role in direct the light towards the possibility of the existence of financial fraud in the accounting records of the company, which provides the required effort and time for detect fraud and prevent it.
This dissertation depends on study of the topological structure in graph theory as well as introduce some concerning concepts, and generalization them into new topological spaces constructed using elements of graph. Thus, it is required presenting some theorems, propositions, and corollaries that are available in resources and proof which are not available. Moreover, studying some relationships between many concepts and examining their equivalence property like locally connectedness, convexity, intervals, and compactness. In addition, introducing the concepts of weaker separation axioms in α-topological spaces than the standard once like, α-feebly Hausdorff, α-feebly regular, and α-feebly normal and studying their properties. Furthermor
... Show MoreThis investigation was carried out to study the treatment and recycling of wastewater in the cotton textile industry for an effluent containing three dyes: direct blue, sulphur black and vat yellow. The reuse of such effluent can only be made possible by appropriate treatment method such as chemical coagulation. Ferrous and ferric sulphate with and without calcium hydroxide were employed in this study as the chemical coagulants.
The results showed that the percentage removal of direct blue ranged between 91.4 and 94 , for sulphur black ranged between 98.7 and 99.5 while for vat yellow it was between 97 and 99.
Methods of speech recognition have been the subject of several studies over the past decade. Speech recognition has been one of the most exciting areas of the signal processing. Mixed transform is a useful tool for speech signal processing; it is developed for its abilities of improvement in feature extraction. Speech recognition includes three important stages, preprocessing, feature extraction, and classification. Recognition accuracy is so affected by the features extraction stage; therefore different models of mixed transform for feature extraction were proposed. The properties of the recorded isolated word will be 1-D, which achieve the conversion of each 1-D word into a 2-D form. The second step of the word recognizer requires, the
... Show MoreFace Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a
... Show More