In this study, a new technique is considered for solving linear fractional Volterra-Fredholm integro-differential equations (LFVFIDE's) with fractional derivative qualified in the Caputo sense. The method is established in three types of Lagrange polynomials (LP’s), Original Lagrange polynomial (OLP), Barycentric Lagrange polynomial (BLP), and Modified Lagrange polynomial (MLP). General Algorithm is suggested and examples are included to get the best effectiveness, and implementation of these types. Also, as special case fractional differential equation is taken to evaluate the validity of the proposed method. Finally, a comparison between the proposed method and other methods are taken to present the effectiveness of the proposal method in solving these problems.
The assessment of the environmental impact of the cement industry using the Leopold Matrix is to determine the negative and positive impacts on the environment resulting from this industry, and what are the long-term and short-term effects, direct and indirect, and the amount of these effects and potential risks, and that this evaluation process is done through a number of methods, including Matrix method, including (Leopold).
The importance of the research because the cement occupies is of great importance in the world, especially in our country, Iraq, in the sector of construction and modernity, and the toxic emissions and solid waste produced by the production of this material. <
... Show MoreThis paper presents ABAQUS simulations of fully encased composite columns, aiming to examine the behavior of a composite column system under different load conditions, namely concentric, eccentric with 25 mm eccentricity, and flexural loading. The numerical results are validated with the experimental results obtained for columns subjected to static loads. A new loading condition with a 50 mm eccentricity is simulated to obtain additional data points for constructing the interaction diagram of load-moment curves, in an attempt to investigate the load-moment behavior for a reference column with a steel I-section and a column with a GFRP I-section. The result comparison shows that the experimental data align closely with the simulation
... Show MoreAlthough the majority of trends confirm the design aspects of the performance, functional and aesthetic design of the product. However, the attention was more focused on the nature of the plastic for those results, it is through the appearance of formal and guaranteed career such as designing Achieved adopt us the extent of the impact Relations Association between the elements and principles of design to achieve complementarity in the completed design of aesthetic and functional significance expressive and symbolic and in doing so has introduced a lot of new concepts for the arrangement and organization, coordination and functional classification of the unfinished design gave way to show diversity trends in the design of industrial produ
... Show MoreAspect-Oriented Software Development (AOSD) is a technology that helps achieving
better Separation of Concern (SOC) by providing mechanisms to identify all relevant points
in a program at which aspectual adaptations need to take place. This paper introduces a
banking application using of AOSD with security concern in information hiding.
In this paper, the class of meromorphic multivalent functions of the form by using fractional differ-integral operators is introduced. We get Coefficients estimates, radii of convexity and star likeness. Also closure theorems and distortion theorem for the class , is calculaed.
A method for Approximated evaluation of linear functional differential equations is described. where a function approximation as a linear combination of a set of orthogonal basis functions which are chebyshev functions .The coefficients of the approximation are determined by (least square and Galerkin’s) methods. The property of chebyshev polynomials leads to good results , which are demonstrated with examples.
In this work, an analytical approximation solution is presented, as well as a comparison of the Variational Iteration Adomian Decomposition Method (VIADM) and the Modified Sumudu Transform Adomian Decomposition Method (M STADM), both of which are capable of solving nonlinear partial differential equations (NPDEs) such as nonhomogeneous Kertewege-de Vries (kdv) problems and the nonlinear Klein-Gordon. The results demonstrate the solution’s dependability and excellent accuracy.