The purpose of this paper is to introduce and study the concepts of fuzzy generalized open sets, fuzzy generalized closed sets, generalized continuous fuzzy proper functions and prove results about these concepts.
We examine 10 hypothetical patients suffering from some of the symptoms of COVID 19 (modified) using topological concepts on topological spaces created from equality and similarity interactions and our information system. This is determined by the degree of accuracy obtained by weighing the value of the lower and upper figures. In practice, this approach has become clearer.
The study of properties of space of entire functions of several complex variables was initiated by Kamthan [4] using the topological properties of the space. We have introduced in this paper the sub-space of space of entire functions of several complex variables which is studied by Kamthan.
The aim of this study is to develop a novel framework for managing risks in smart supply chains by enhancing business continuity and resilience against potential disruptions. This research addresses the growing uncertainty in supply chain environments, driven by both natural phenomena-such as pandemics and earthquakes—and human-induced events, including wars, political upheavals, and societal transformations. Recognizing that traditional risk management approaches are insufficient in such dynamic contexts, the study proposes an adaptive framework that integrates proactive and remedial measures for effective risk mitigation. A fuzzy risk matrix is employed to assess and analyze uncertainties, facilitating the identification of disr
... Show MoreIn this article, performing and deriving te probability density function for Rayleigh distribution is done by using ordinary least squares estimator method and Rank set estimator method. Then creating interval for scale parameter of Rayleigh distribution. Anew method using is used for fuzzy scale parameter. After that creating the survival and hazard functions for two ranking functions are conducted to show which one is beast.
This paper deal with the estimation of the shape parameter (a) of Generalized Exponential (GE) distribution when the scale parameter (l) is known via preliminary test single stage shrinkage estimator (SSSE) when a prior knowledge (a0) a vailable about the shape parameter as initial value due past experiences as well as suitable region (R) for testing this prior knowledge.
The Expression for the Bias, Mean squared error [MSE] and Relative Efficiency [R.Eff(×)] for the proposed estimator are derived. Numerical results about beha
... Show More