The purpose of this paper is to introduce and study the concepts of fuzzy generalized open sets, fuzzy generalized closed sets, generalized continuous fuzzy proper functions and prove results about these concepts.
Objective: To assess prospectively functional outcome of interlocked intramedullary nailing fixation in management of closed tibia shaft fractures. Methodology: This prospective study included 134 patients with closed shaft tibia fractures with age 18-60 years and isolated closed fracture of shaft of tibia. The fractures were fixed by interlocking intramedullary nail. At follow-up after 12 months postoperatively, the functional outcome was assessed radiographically for the sign of union and clinically according to Klemm-Borner criteria. Results: The mean age was 38.55 years. Out of 134 patients, 55.2% were male. The cause was road traffic accident in 44.8%, majority of the fracture occur in the mid-shaft (41.8%), and oblique fracture was th
... Show MoreThe radial wave function R(r) and the radial distribution function P(r) as a function of (r), for the Hydrogen atom was calculated for several atomic state (1s,2s,2p,3s,3p,3d) The results were compared with Hydrogen like atom(He+,Li+2,Be+3).
Bimetallic Au –Pt catalysts supporting TiO2 were synthesised using two methods; sol immobilization and impregnation methods. The prepared catalyst underwent a thermal treatment process at 400◦ C, while the reduction reaction under the same condition was done and the obtained catalysts were identified with transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). It has been found that the prepared catalysts have a dimension around 2.5 nm and the particles have uniform orders leading to high dispersion of platinum molecules .The prepared catalysts have been examined as efficient photocatalysts to degrade the Crystal violet dye under UV-light. The optimum values of Bimetallic Au –Pt catalysts supp
... Show MoreThe main goal of this paper is to dualize the two concepts St-closed submodule and semi-extending module which were given by Ahmed and Abbas in 2015. These dualizations are called CSt-closed submodule and cosemi-extending mod- ule. Many important properties of these dualizations are investigated, as well as some others useful results which mentioned by those authors are dualized. Furthermore, the relationships of cosemi-extending and other related modules are considered.
Abstract Throughout this paper R represents commutative ring with identity and M is a unitary left R-module, the purpose of this paper is to study a new concept, (up to our knowledge), named St-closed submodules. It is stronger than the concept of closed submodules, where a submodule N of an R-module M is called St-closed (briefly N ≤Stc M) in M, if it has no proper semi-essential extensions in M, i.e if there exists a submodule K of M such that N is a semi-essential submodule of K then N = K. An ideal I of R is called St-closed if I is an St-closed R-submodule. Various properties of St-closed submodules are considered.
Objective: To evaluate the functional outcome of percutaneous cross two K wires fixation for Gartland types II and III fractures of humerus. Methodology: This prospective study included80 patients with supracondylar humeral fracture, who underwent closed reduction and fixation by two crossed Kirschner wires. We included children with age < 15 years with closed fractures with Gartland types II and III, while the patient with vascular injury, open, irreducible fractures were excluded. The patients were following up for 6 months and assessed functionally by Flynn’s criteria. Results: The mean age of patients was 8.1 years. Trauma while child playing was the main mechanism of injury in 43 (59.8%) children and 46 (57.5%) fractures were of the
... Show MoreThis paper is concerned with the numerical solutions of the vorticity transport equation (VTE) in two-dimensional space with homogenous Dirichlet boundary conditions. Namely, for this problem, the Crank-Nicolson finite difference equation is derived. In addition, the consistency and stability of the Crank-Nicolson method are studied. Moreover, a numerical experiment is considered to study the convergence of the Crank-Nicolson scheme and to visualize the discrete graphs for the vorticity and stream functions. The analytical result shows that the proposed scheme is consistent, whereas the numerical results show that the solutions are stable with small space-steps and at any time levels.
Background: Quality of life in brain tumor patients is an emerging issue and has prompted neurosurgeons to recon¬sider the need for cognitive assessment in the course of treatment. To date there has been a lack of comprehensive neuropsychological assessment performed preoperatively and in the acute postoperative period in our hospitals.Objectives: to establish the effects of tumors and their surgical treatment, from a neuropsychological perspective, on cognitive functioning in patients with cerebral Gliomas. Methods: This is a prospective study conducted in the Neurosurgical Hospital in Baghdad, Iraq, during the period from January 1999 to January 2001. Any patient admitted during the period of the study with clinical history, signs, sy
... Show MoreIn this paper, we shall introduce a new kind of Perfect (or proper) Mappings, namely ω-Perfect Mappings, which are strictly weaker than perfect mappings. And the following are the main results: (a) Let f : X→Y be ω-perfect mapping of a space X onto a space Y, then X is compact (Lindeloff), if Y is so. (b) Let f : X→Y be ω-perfect mapping of a regular space X onto a space Y. then X is paracompact (strongly paracompact), if Y is so paracompact (strongly paracompact). (c) Let X be a compact space and Y be a p*-space then the projection p : X×Y→Y is a ω-perfect mapping. Hence, X×Y is compact (paracompact, strongly paracompact) if and only if Y is so.