The evolution of the Internet of things (IoT) led to connect billions of heterogeneous physical devices together to improve the quality of human life by collecting data from their environment. However, there is a need to store huge data in big storage and high computational capabilities. Cloud computing can be used to store big data. The data of IoT devices is transferred using two types of protocols: Message Queuing Telemetry Transport (MQTT) and Hypertext Transfer Protocol (HTTP). This paper aims to make a high performance and more reliable system through efficient use of resources. Thus, load balancing in cloud computing is used to dynamically distribute the workload across nodes to avoid overloading any individual resource, by combining two types of algorithms: dynamic algorithm (adaptive firefly) and static algorithm (weighted round robin). The results show improvement in resource utilization, increased productivity, and reduced response time.
This study introduces a highly sensitive trapezium-shaped PCF based on an SPR refractometric sensor with unique design features. The structure of a sensor was designed and analyzed using COMSOL Multiphysics v5.6 based on Finite Element Method (FEM) with a focus on investigating the influence of various geometric parameters on its performance. The two channels were coated with a metallic gold layer to provide chemical stability, and a thin layer of TiO₂ improved the gold's adhesion to the fiber. The findings indicate that the proposed sensor achieves maximum amplitude and wavelength sensitivities of 1,779 RIU⁻¹ and 30,500 nm/RIU, respectively, with corresponding resolutions of 3.2
New ligands, N1, N4-bis (benzo[d]thiazol-2- ylcarbamothioyl) succinamide (L1) and N1, N4- bis (benzylcarbamothioyl)succinamide (L2), derived from succinyl chloride and 2-amino benzothiazole or benzylamine, respectively, have been used to prepare a set of transition metal complexes with the general formula [M2(L)Cl4], where L=L1 or L2, M = Mn(II), Ni(II), Cu(II), Cd(II), Co(II), Zn(II) or Hg(II). The synthesized compounds were characterized using various analytical techniques including TGA, 13C NMR, mass spectroscopy, 1H and Fourier-transform infrared (FTIR) spectroscopy, magnetic measurement, molar conductivity, electronic spectrum, (%M, %C, %H, %N) and atomic absorption flame (AAF) analysis. The results showed that (L1, L2) bin
... Show MoreThis study designed to prepare ultrafine apixaban (APX) o/w nanoemulsion (NE) based gel with droplet size below 50 nm as a good method for transdermal APX delivery without using permeation enhancer, alternatively, the formulation components itself act as permeation enhancer. APX, a potent oral anticoagulant drug that selectively and directly inhibit coagulation factor Xa, was selected as a good candidate for transdermal delivery as it displays poor water solubility (0.028 mg/mL) and low bioavailability (50%). APX-NE gel was prepared using triacetin, triton-x-100 and carbitol as oil phase, surfactant and cosurfactant respectively, while Carbopol 940 used as a gelling agent. Ex vivo permeation of APX-NE gel through human stratum c
... Show MoreIn drilling fluid program, selecting the drilling fluid that will reduce the lost time is the first objective, and will be economical regardless of its cost. The amount and type of solids in drilling fluid is the primary control of the rheological and filtration properties. Palygorskite clay (attapulgite) is an active solid that has the ability to reactive with its environment and form a gel structure within a fluid and due to its stability in the presence of brines and electrolytes this type of clay is preferred for use. The aim of this study is to improve properties of Iraqi palygorskite (PAL) by adding different chemical additives such as caustic soda NaOH and soda ash Na2CO3 with a different con
... Show MoreAlzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of
... Show MoreThis research was to determine the effect of rare earth metal (REM) on the as-cast microstructure of Mg-4Al alloy. The rare earth metal used here is Lanthanum to produce Mg-4Al-1.5La alloy. The microstructure was characterized by optical microscopy. The phases of this alloy were identified by X-ray diffraction. The microstructure of Mg-4Al consists of α-Mg and grain boundaries with precipitated phase particles. With the addition of Lanthanum, three distinct phases were identified in the X-ray diffraction patterns of the as cast Mg-4Al-1.5La: Mg, Al11La3, Al4La. The Mg17Al12 phase was not detected. The addition of Lanthanium increases the hardness and dec
... Show More